Question
Simplify the expression
100001x2−100009
Evaluate
(x×1001)2−1001×1009
Use the commutative property to reorder the terms
(1001x)2−1001×1009
Multiply the numbers
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
(1001x)2−100009
Solution
100001x2−100009
Show Solution

Factor the expression
100001(x−3)(x+3)
Evaluate
(x×1001)2−1001×1009
Evaluate
More Steps

Evaluate
(x×1001)2
Use the commutative property to reorder the terms
(1001x)2
To raise a product to a power,raise each factor to that power
(1001)2x2
Evaluate the power
More Steps

Evaluate
(1001)2
To raise a fraction to a power,raise the numerator and denominator to that power
100212
Evaluate the power
10021
Evaluate the power
100001
100001x2
100001x2−1001×1009
Evaluate
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
100001x2−100009
Factor out 100001 from the expression
100001(x2−9)
Solution
More Steps

Evaluate
x2−9
Rewrite the expression in exponential form
x2−32
Use a2−b2=(a−b)(a+b) to factor the expression
(x−3)(x+3)
100001(x−3)(x+3)
Show Solution

Find the roots
x1=−3,x2=3
Evaluate
(x×1001)2−1001×1009
To find the roots of the expression,set the expression equal to 0
(x×1001)2−1001×1009=0
Use the commutative property to reorder the terms
(1001x)2−1001×1009=0
Multiply the numbers
More Steps

Evaluate
1001×1009
To multiply the fractions,multiply the numerators and denominators separately
100×1009
Multiply the numbers
100009
(1001x)2−100009=0
Move the constant to the right-hand side and change its sign
(1001x)2=0+100009
Add the terms
(1001x)2=100009
Calculate
100001x2=100009
Multiply by the reciprocal
100001x2×10000=100009×10000
Multiply
x2=100009×10000
Multiply
More Steps

Evaluate
100009×10000
Reduce the numbers
9×1
Simplify
9
x2=9
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±9
Simplify the expression
More Steps

Evaluate
9
Write the number in exponential form with the base of 3
32
Reduce the index of the radical and exponent with 2
3
x=±3
Separate the equation into 2 possible cases
x=3x=−3
Solution
x1=−3,x2=3
Show Solution
