Question
Solve the equation
Solve for x
Solve for a
Solve for b
x=a25b+25b2+7a2x=a25b−25b2+7a2
Evaluate
(xa)2−7=10xb
To raise a product to a power,raise each factor to that power
x2a2−7=10xb
Rewrite the expression
a2x2−7=10bx
Move the expression to the left side
a2x2−7−10bx=0
Rewrite in standard form
a2x2−10bx−7=0
Substitute a=a2,b=−10b and c=−7 into the quadratic formula x=2a−b±b2−4ac
x=2a210b±(−10b)2−4a2(−7)
Simplify the expression
More Steps

Evaluate
(−10b)2−4a2(−7)
Multiply
More Steps

Multiply the terms
4a2(−7)
Rewrite the expression
−4a2×7
Multiply the terms
−28a2
(−10b)2−(−28a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−10b)2+28a2
Evaluate the power
100b2+28a2
x=2a210b±100b2+28a2
Simplify the radical expression
More Steps

Evaluate
100b2+28a2
Factor the expression
4(25b2+7a2)
The root of a product is equal to the product of the roots of each factor
4×25b2+7a2
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
225b2+7a2
x=2a210b±225b2+7a2
Separate the equation into 2 possible cases
x=2a210b+225b2+7a2x=2a210b−225b2+7a2
Simplify the expression
More Steps

Evaluate
x=2a210b+225b2+7a2
Divide the terms
More Steps

Evaluate
2a210b+225b2+7a2
Rewrite the expression
2a22(5b+25b2+7a2)
Reduce the fraction
a25b+25b2+7a2
x=a25b+25b2+7a2
x=a25b+25b2+7a2x=2a210b−225b2+7a2
Solution
More Steps

Evaluate
x=2a210b−225b2+7a2
Divide the terms
More Steps

Evaluate
2a210b−225b2+7a2
Rewrite the expression
2a22(5b−25b2+7a2)
Reduce the fraction
a25b−25b2+7a2
x=a25b−25b2+7a2
x=a25b+25b2+7a2x=a25b−25b2+7a2
Show Solution
