Question
Simplify the expression
3x2y+3xy2
Evaluate
(x+y)3−(x3+y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(x+y)3−x3−y3
Expand the expression
x3+3x2y+3xy2+y3−x3−y3
The sum of two opposites equals 0
More Steps

Evaluate
x3−x3
Collect like terms
(1−1)x3
Add the coefficients
0×x3
Calculate
0
0+3x2y+3xy2+y3−y3
Remove 0
3x2y+3xy2+y3−y3
The sum of two opposites equals 0
More Steps

Evaluate
y3−y3
Collect like terms
(1−1)y3
Add the coefficients
0×y3
Calculate
0
3x2y+3xy2+0
Solution
3x2y+3xy2
Show Solution

Factor the expression
3xy(x+y)
Evaluate
(x+y)3−(x3+y3)
Use (a+b)3=a3+3a2b+3ab2+b3 to expand the expression
x3+3x2y+3xy2+y3−(x3+y3)
Simplify
x3+3x2y+3xy2+y3−x3−y3
The sum of two opposites equals 0
More Steps

Evaluate
x3−x3
Collect like terms
(1−1)x3
Add the coefficients
0×x3
Calculate
0
0+3x2y+3xy2+y3−y3
Remove 0
3x2y+3xy2+y3−y3
The sum of two opposites equals 0
More Steps

Evaluate
y3−y3
Collect like terms
(1−1)y3
Add the coefficients
0×y3
Calculate
0
3x2y+3xy2+0
Remove 0
3x2y+3xy2
Rewrite the expression
3xyx+3xy×y
Solution
3xy(x+y)
Show Solution
