Question
Simplify the expression
x8−63x×x4+93x2
Evaluate
(x4−3x31)2
Use anm=nam to transform the expression
(x4−33x)2
Solution
More Steps

Use the the distributive property to expand the expression
x4×x4+x4(−33x)−33x×x4−33x×(−33x)
Multiply the terms
More Steps

Evaluate
x4×x4
Use the product rule an×am=an+m to simplify the expression
x4+4
Add the numbers
x8
x8+x4(−33x)−33x×x4−33x×(−33x)
Multiply the terms
More Steps

Evaluate
x4(−33x)
Rewrite the expression
−x4×33x
Use the commutative property to reorder the terms
−3x43x
x8−3x43x−33x×x4−33x×(−33x)
Multiply the terms
More Steps

Evaluate
−33x×(−33x)
Calculate
−3(−33x2)
Rewrite the expression
3×33x2
Multiply the terms
93x2
x8−3x43x−33x×x4+93x2
Calculate
More Steps

Evaluate
−3x43x−33x×x4
Rewrite the expression
−33x×x4−33x×x4
Collect like terms by calculating the sum or difference of their coefficients
(−3−3)3x×x4
Subtract the numbers
−63x×x4
x8−63x×x4+93x2
x8−63x×x4+93x2
Show Solution

Find the roots
x1=0,x2=1127
Alternative Form
x1=0,x2≈1.349348
Evaluate
(x4−3x31)2
To find the roots of the expression,set the expression equal to 0
(x4−3x31)2=0
The only way a power can be 0 is when the base equals 0
x4−3x31=0
Factor the expression
x31(x311−3)=0
Separate the equation into 2 possible cases
x31=0x311−3=0
The only way a power can be 0 is when the base equals 0
x=0x311−3=0
Solve the equation
More Steps

Evaluate
x311−3=0
Move the constant to the right-hand side and change its sign
x311=0+3
Removing 0 doesn't change the value,so remove it from the expression
x311=3
Raise both sides of the equation to the reciprocal of the exponent
(x311)113=3113
Calculate
x=1133
Simplify
x=1127
x=0x=1127
Solution
x1=0,x2=1127
Alternative Form
x1=0,x2≈1.349348
Show Solution
