Question
Simplify the expression
22x4−308x3+1078x2−80
Evaluate
(x2−7x)×22(x2−7x)−80
Multiply the terms
More Steps

Multiply the terms
(x2−7x)×22(x2−7x)
Multiply the first two terms
22(x2−7x)(x2−7x)
Multiply the terms
22(x2−7x)2
22(x2−7x)2−80
Solution
More Steps

Calculate
22(x2−7x)2
Simplify
22(x4−14x3+49x2)
Apply the distributive property
22x4−22×14x3+22×49x2
Multiply the numbers
22x4−308x3+22×49x2
Multiply the numbers
22x4−308x3+1078x2
22x4−308x3+1078x2−80
Show Solution

Factor the expression
2(11x4−154x3+539x2−40)
Evaluate
(x2−7x)×22(x2−7x)−80
Multiply the terms
More Steps

Evaluate
(x2−7x)×22(x2−7x)
Multiply the first two terms
22(x2−7x)(x2−7x)
Multiply the terms
22(x2−7x)2
22(x2−7x)2−80
Simplify
More Steps

Evaluate
22(x2−7x)2
Simplify
More Steps

Evaluate
(x2−7x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(x2)2−2x2×7x+(7x)2
Calculate
x4−14x3+49x2
22(x4−14x3+49x2)
Apply the distributive property
22x4+22(−14x3)+22×49x2
Multiply the terms
More Steps

Evaluate
22(−14)
Multiplying or dividing an odd number of negative terms equals a negative
−22×14
Multiply the numbers
−308
22x4−308x3+22×49x2
Multiply the terms
22x4−308x3+1078x2
22x4−308x3+1078x2−80
Solution
2(11x4−154x3+539x2−40)
Show Solution

Find the roots
x1=2277−5929+88110,x2=2277−5929−88110,x3=2277+5929−88110,x4=2277+5929+88110
Alternative Form
x1≈−0.262569,x2≈0.283935,x3≈6.716065,x4≈7.262569
Evaluate
(x2−7x)×22(x2−7x)−80
To find the roots of the expression,set the expression equal to 0
(x2−7x)×22(x2−7x)−80=0
Multiply the terms
More Steps

Multiply the terms
(x2−7x)×22(x2−7x)
Multiply the first two terms
22(x2−7x)(x2−7x)
Multiply the terms
22(x2−7x)2
22(x2−7x)2−80=0
Add or subtract both sides
22(x2−7x)2=0+80
Removing 0 doesn't change the value,so remove it from the expression
22(x2−7x)2=80
Divide both sides
2222(x2−7x)2=2280
Divide the numbers
(x2−7x)2=2280
Cancel out the common factor 2
(x2−7x)2=1140
Take the root of both sides of the equation and remember to use both positive and negative roots
x2−7x=±1140
Simplify the expression
More Steps

Evaluate
1140
To take a root of a fraction,take the root of the numerator and denominator separately
1140
Simplify the radical expression
More Steps

Evaluate
40
Write the expression as a product where the root of one of the factors can be evaluated
4×10
Write the number in exponential form with the base of 2
22×10
The root of a product is equal to the product of the roots of each factor
22×10
Reduce the index of the radical and exponent with 2
210
11210
Multiply by the Conjugate
11×11210×11
Multiply the numbers
More Steps

Evaluate
10×11
The product of roots with the same index is equal to the root of the product
10×11
Calculate the product
110
11×112110
When a square root of an expression is multiplied by itself,the result is that expression
112110
x2−7x=±112110
Separate the equation into 2 possible cases
x2−7x=112110x2−7x=−112110
Calculate
More Steps

Evaluate
x2−7x=112110
Move the expression to the left side
x2−7x−112110=0
Multiply both sides
11(x2−7x−112110)=11×0
Calculate
11x2−77x−2110=0
Substitute a=11,b=−77 and c=−2110 into the quadratic formula x=2a−b±b2−4ac
x=2×1177±(−77)2−4×11(−2110)
Simplify the expression
x=2277±(−77)2−4×11(−2110)
Simplify the expression
More Steps

Evaluate
(−77)2−4×11(−2110)
Multiply
(−77)2−(−88110)
Rewrite the expression
772−(−88110)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
772+88110
Evaluate the power
5929+88110
x=2277±5929+88110
Separate the equation into 2 possible cases
x=2277+5929+88110x=2277−5929+88110
x=2277+5929+88110x=2277−5929+88110x2−7x=−112110
Calculate
More Steps

Evaluate
x2−7x=−112110
Move the expression to the left side
x2−7x−(−112110)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−7x+112110=0
Multiply both sides
11(x2−7x+112110)=11×0
Calculate
11x2−77x+2110=0
Substitute a=11,b=−77 and c=2110 into the quadratic formula x=2a−b±b2−4ac
x=2×1177±(−77)2−4×11×2110
Simplify the expression
x=2277±(−77)2−4×11×2110
Simplify the expression
More Steps

Evaluate
(−77)2−4×11×2110
Multiply the terms
(−77)2−88110
Rewrite the expression
772−88110
Evaluate the power
5929−88110
x=2277±5929−88110
Separate the equation into 2 possible cases
x=2277+5929−88110x=2277−5929−88110
x=2277+5929+88110x=2277−5929+88110x=2277+5929−88110x=2277−5929−88110
Solution
x1=2277−5929+88110,x2=2277−5929−88110,x3=2277+5929−88110,x4=2277+5929+88110
Alternative Form
x1≈−0.262569,x2≈0.283935,x3≈6.716065,x4≈7.262569
Show Solution
