Question
Simplify the expression
3x3−4−x2+2x
Evaluate
(x2×3x−4)−(x2−2x×1)
Multiply
More Steps

Multiply the terms
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
(3x3−4)−(x2−2x×1)
Remove the parentheses
3x3−4−(x2−2x×1)
Multiply the terms
3x3−4−(x2−2x)
Solution
3x3−4−x2+2x
Show Solution

Factor the expression
(x−1)(3x2+4+2x)
Evaluate
(x2×3x−4)−(x2−2x×1)
Multiply
More Steps

Multiply the terms
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
(3x3−4)−(x2−2x×1)
Remove the parentheses
3x3−4−(x2−2x×1)
Multiply the terms
3x3−4−(x2−2x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x3−4−x2+2x
Calculate
3x3+4x+2x2−3x2−4−2x
Rewrite the expression
x×3x2+x×4+x×2x−3x2−4−2x
Factor out x from the expression
x(3x2+4+2x)−3x2−4−2x
Factor out −1 from the expression
x(3x2+4+2x)−(3x2+4+2x)
Solution
(x−1)(3x2+4+2x)
Show Solution

Find the roots
x1=−31−311i,x2=−31+311i,x3=1
Alternative Form
x1≈−0.3˙−1.105542i,x2≈−0.3˙+1.105542i,x3=1
Evaluate
(x2×3x−4)−(x2−2x×1)
To find the roots of the expression,set the expression equal to 0
(x2×3x−4)−(x2−2x×1)=0
Multiply
More Steps

Multiply the terms
x2×3x
Multiply the terms with the same base by adding their exponents
x2+1×3
Add the numbers
x3×3
Use the commutative property to reorder the terms
3x3
(3x3−4)−(x2−2x×1)=0
Remove the parentheses
3x3−4−(x2−2x×1)=0
Multiply the terms
3x3−4−(x2−2x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x3−4−x2+2x=0
Factor the expression
(x−1)(3x2+4+2x)=0
Separate the equation into 2 possible cases
x−1=03x2+4+2x=0
Solve the equation
More Steps

Evaluate
x−1=0
Move the constant to the right-hand side and change its sign
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
x=13x2+4+2x=0
Solve the equation
More Steps

Evaluate
3x2+4+2x=0
Rewrite in standard form
3x2+2x+4=0
Substitute a=3,b=2 and c=4 into the quadratic formula x=2a−b±b2−4ac
x=2×3−2±22−4×3×4
Simplify the expression
x=6−2±22−4×3×4
Simplify the expression
More Steps

Evaluate
22−4×3×4
Multiply the terms
22−48
Evaluate the power
4−48
Subtract the numbers
−44
x=6−2±−44
Simplify the radical expression
More Steps

Evaluate
−44
Evaluate the power
44×−1
Evaluate the power
44×i
Evaluate the power
211×i
x=6−2±211×i
Separate the equation into 2 possible cases
x=6−2+211×ix=6−2−211×i
Simplify the expression
x=−31+311ix=6−2−211×i
Simplify the expression
x=−31+311ix=−31−311i
x=1x=−31+311ix=−31−311i
Solution
x1=−31−311i,x2=−31+311i,x3=1
Alternative Form
x1≈−0.3˙−1.105542i,x2≈−0.3˙+1.105542i,x3=1
Show Solution
