Question
Solve the equation
x=−∣3y−y2∣9−3y,0<y<3x=−∣3y−y2∣9−3y,y>3x=−∣3y−y2∣9−3y,y<0x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y>3x=∣3y−y2∣9−3y,y<0
Evaluate
(x2y2−1)×3−x2y3=0
Multiply the terms
3(x2y2−1)−x2y3=0
Rewrite the expression
3(y2x2−1)−y3x2=0
Calculate
More Steps

Evaluate
3(y2x2−1)
Apply the distributive property
3y2x2−3×1
Any expression multiplied by 1 remains the same
3y2x2−3
3y2x2−3−y3x2=0
Collect like terms by calculating the sum or difference of their coefficients
(3y2−y3)x2−3=0
Move the constant to the right side
(3y2−y3)x2=3
Divide both sides
3y2−y3(3y2−y3)x2=3y2−y33
Divide the numbers
x2=3y2−y33
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±3y2−y33
Simplify the expression
More Steps

Evaluate
3y2−y33
To take a root of a fraction,take the root of the numerator and denominator separately
3y2−y33
Simplify the radical expression
More Steps

Evaluate
3y2−y3
Factor the expression
y2(3−y)
The root of a product is equal to the product of the roots of each factor
y2×3−y
Reduce the index of the radical and exponent with 2
∣y∣×3−y
∣y∣×3−y3
Multiply by the Conjugate
∣y∣×3−y×3−y3×3−y
Calculate
∣y∣∣3−y∣3×3−y
Calculate
More Steps

Evaluate
3×3−y
The product of roots with the same index is equal to the root of the product
3(3−y)
Calculate the product
9−3y
∣y∣∣3−y∣9−3y
x=±∣y∣∣3−y∣9−3y
Separate the equation into 2 possible cases
x=∣y∣∣3−y∣9−3yx=−∣y∣∣3−y∣9−3y
Multiply the terms
x=∣y(3−y)∣9−3yx=−∣y∣∣3−y∣9−3y
Multiply the terms
x=∣y(3−y)∣9−3yx=−∣y(3−y)∣9−3y
Calculate
{x=−∣y(3−y)∣9−3y0<y<3{x=−∣y(3−y)∣9−3yy>3{x=−∣y(3−y)∣9−3yy<0{x=∣y(3−y)∣9−3y0<y<3{x=∣y(3−y)∣9−3yy>3{x=∣y(3−y)∣9−3yy<0
Simplify
x=−∣y(3−y)∣9−3y,0<y<3x=−∣y(3−y)∣9−3y,y>3x=−∣y(3−y)∣9−3y,y<0x=∣3y−y2∣9−3y,y<0x=∣y(3−y)∣9−3y,0<y<3x=∣y(3−y)∣9−3y,y>3
Simplify
x=−∣y(3−y)∣9−3y,0<y<3x=−∣y(3−y)∣9−3y,y>3x=−∣y(3−y)∣9−3y,y<0x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y<0x=∣y(3−y)∣9−3y,y>3
Simplify
x=−∣y(3−y)∣9−3y,0<y<3x=−∣y(3−y)∣9−3y,y>3x=−∣y(3−y)∣9−3y,y<0x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y>3x=∣3y−y2∣9−3y,y<0
Simplify
x=−∣3y−y2∣9−3y,y<0x=−∣y(3−y)∣9−3y,0<y<3x=−∣y(3−y)∣9−3y,y>3x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y>3x=∣3y−y2∣9−3y,y<0
Simplify
x=−∣3y−y2∣9−3y,0<y<3x=−∣3y−y2∣9−3y,y<0x=−∣y(3−y)∣9−3y,y>3x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y>3x=∣3y−y2∣9−3y,y<0
Solution
x=−∣3y−y2∣9−3y,0<y<3x=−∣3y−y2∣9−3y,y>3x=−∣3y−y2∣9−3y,y<0x=∣3y−y2∣9−3y,0<y<3x=∣3y−y2∣9−3y,y>3x=∣3y−y2∣9−3y,y<0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
(x2y2−1)×3−x2y3=0
Multiply the terms
3(x2y2−1)−x2y3=0
To test if the graph of 3(x2y2−1)−x2y3=0 is symmetry with respect to the origin,substitute -x for x and -y for y
3((−x)2(−y)2−1)−(−x)2(−y)3=0
Evaluate
More Steps

Evaluate
3((−x)2(−y)2−1)−(−x)2(−y)3
Multiply the terms
3(x2y2−1)−(−x)2(−y)3
Multiply the terms
More Steps

Evaluate
(−x)2(−y)3
Rewrite the expression
x2(−y3)
Use the commutative property to reorder the terms
−x2y3
3(x2y2−1)−(−x2y3)
Rewrite the expression
3(x2y2−1)+x2y3
3(x2y2−1)+x2y3=0
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=6x−3yx−6y+2y2
Calculate
(x2y2−1)3−x2y3=0
Simplify the expression
3x2y2−3−x2y3=0
Take the derivative of both sides
dxd(3x2y2−3−x2y3)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(3x2y2−3−x2y3)
Use differentiation rules
dxd(3x2y2)+dxd(−3)+dxd(−x2y3)
Evaluate the derivative
More Steps

Evaluate
dxd(3x2y2)
Use differentiation rules
dxd(3x2)×y2+3x2×dxd(y2)
Evaluate the derivative
6xy2+3x2×dxd(y2)
Evaluate the derivative
6xy2+6x2ydxdy
6xy2+6x2ydxdy+dxd(−3)+dxd(−x2y3)
Use dxd(c)=0 to find derivative
6xy2+6x2ydxdy+0+dxd(−x2y3)
Evaluate the derivative
More Steps

Evaluate
dxd(−x2y3)
Use differentiation rules
dxd(−x2)×y3−x2×dxd(y3)
Evaluate the derivative
−2xy3−x2×dxd(y3)
Evaluate the derivative
−2xy3−3x2y2dxdy
6xy2+6x2ydxdy+0−2xy3−3x2y2dxdy
Evaluate
6xy2+6x2ydxdy−2xy3−3x2y2dxdy
6xy2+6x2ydxdy−2xy3−3x2y2dxdy=dxd(0)
Calculate the derivative
6xy2+6x2ydxdy−2xy3−3x2y2dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
6xy2−2xy3+(6x2y−3x2y2)dxdy=0
Move the constant to the right side
(6x2y−3x2y2)dxdy=0−(6xy2−2xy3)
Subtract the terms
More Steps

Evaluate
0−(6xy2−2xy3)
Removing 0 doesn't change the value,so remove it from the expression
−(6xy2−2xy3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6xy2+2xy3
(6x2y−3x2y2)dxdy=−6xy2+2xy3
Divide both sides
6x2y−3x2y2(6x2y−3x2y2)dxdy=6x2y−3x2y2−6xy2+2xy3
Divide the numbers
dxdy=6x2y−3x2y2−6xy2+2xy3
Solution
More Steps

Evaluate
6x2y−3x2y2−6xy2+2xy3
Rewrite the expression
6x2y−3x2y2xy(−6y+2y2)
Rewrite the expression
xy(6x−3yx)xy(−6y+2y2)
Reduce the fraction
6x−3yx−6y+2y2
dxdy=6x−3yx−6y+2y2
Show Solution

Find the second derivative
dx2d2y=108yx2−54y2x2+9y3x2−72x2−144y+168y2−70y3+10y4
Calculate
(x2y2−1)3−x2y3=0
Simplify the expression
3x2y2−3−x2y3=0
Take the derivative of both sides
dxd(3x2y2−3−x2y3)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(3x2y2−3−x2y3)
Use differentiation rules
dxd(3x2y2)+dxd(−3)+dxd(−x2y3)
Evaluate the derivative
More Steps

Evaluate
dxd(3x2y2)
Use differentiation rules
dxd(3x2)×y2+3x2×dxd(y2)
Evaluate the derivative
6xy2+3x2×dxd(y2)
Evaluate the derivative
6xy2+6x2ydxdy
6xy2+6x2ydxdy+dxd(−3)+dxd(−x2y3)
Use dxd(c)=0 to find derivative
6xy2+6x2ydxdy+0+dxd(−x2y3)
Evaluate the derivative
More Steps

Evaluate
dxd(−x2y3)
Use differentiation rules
dxd(−x2)×y3−x2×dxd(y3)
Evaluate the derivative
−2xy3−x2×dxd(y3)
Evaluate the derivative
−2xy3−3x2y2dxdy
6xy2+6x2ydxdy+0−2xy3−3x2y2dxdy
Evaluate
6xy2+6x2ydxdy−2xy3−3x2y2dxdy
6xy2+6x2ydxdy−2xy3−3x2y2dxdy=dxd(0)
Calculate the derivative
6xy2+6x2ydxdy−2xy3−3x2y2dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
6xy2−2xy3+(6x2y−3x2y2)dxdy=0
Move the constant to the right side
(6x2y−3x2y2)dxdy=0−(6xy2−2xy3)
Subtract the terms
More Steps

Evaluate
0−(6xy2−2xy3)
Removing 0 doesn't change the value,so remove it from the expression
−(6xy2−2xy3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6xy2+2xy3
(6x2y−3x2y2)dxdy=−6xy2+2xy3
Divide both sides
6x2y−3x2y2(6x2y−3x2y2)dxdy=6x2y−3x2y2−6xy2+2xy3
Divide the numbers
dxdy=6x2y−3x2y2−6xy2+2xy3
Divide the numbers
More Steps

Evaluate
6x2y−3x2y2−6xy2+2xy3
Rewrite the expression
6x2y−3x2y2xy(−6y+2y2)
Rewrite the expression
xy(6x−3yx)xy(−6y+2y2)
Reduce the fraction
6x−3yx−6y+2y2
dxdy=6x−3yx−6y+2y2
Take the derivative of both sides
dxd(dxdy)=dxd(6x−3yx−6y+2y2)
Calculate the derivative
dx2d2y=dxd(6x−3yx−6y+2y2)
Use differentiation rules
dx2d2y=(6x−3yx)2dxd(−6y+2y2)×(6x−3yx)−(−6y+2y2)×dxd(6x−3yx)
Calculate the derivative
More Steps

Evaluate
dxd(−6y+2y2)
Use differentiation rules
dxd(−6y)+dxd(2y2)
Evaluate the derivative
−6dxdy+dxd(2y2)
Evaluate the derivative
−6dxdy+4ydxdy
dx2d2y=(6x−3yx)2(−6dxdy+4ydxdy)(6x−3yx)−(−6y+2y2)×dxd(6x−3yx)
Calculate the derivative
More Steps

Evaluate
dxd(6x−3yx)
Use differentiation rules
dxd(6x)+dxd(−3yx)
Evaluate the derivative
6+dxd(−3yx)
Evaluate the derivative
6−3y−3xdxdy
dx2d2y=(6x−3yx)2(−6dxdy+4ydxdy)(6x−3yx)−(−6y+2y2)(6−3y−3xdxdy)
Calculate
More Steps

Evaluate
(−6dxdy+4ydxdy)(6x−3yx)
Use the the distributive property to expand the expression
−6dxdy×(6x−3yx)+4ydxdy×(6x−3yx)
Multiply the terms
−36xdxdy+18yxdxdy+4ydxdy×(6x−3yx)
Multiply the terms
−36xdxdy+18yxdxdy+24yxdxdy−12y2xdxdy
Calculate
−36xdxdy+42yxdxdy−12y2xdxdy
dx2d2y=(6x−3yx)2−36xdxdy+42yxdxdy−12y2xdxdy−(−6y+2y2)(6−3y−3xdxdy)
Calculate
More Steps

Evaluate
(−6y+2y2)(6−3y−3xdxdy)
Use the the distributive property to expand the expression
(−6y+2y2)×6+(−6y+2y2)(−3y−3xdxdy)
Multiply the terms
−36y+12y2+(−6y+2y2)(−3y−3xdxdy)
Multiply the terms
−36y+12y2+18y2+18yxdxdy−6y3−6y2xdxdy
Calculate
−36y+30y2+18yxdxdy−6y3−6y2xdxdy
dx2d2y=(6x−3yx)2−36xdxdy+42yxdxdy−12y2xdxdy−(−36y+30y2+18yxdxdy−6y3−6y2xdxdy)
Calculate
More Steps

Calculate
−36xdxdy+42yxdxdy−12y2xdxdy−(−36y+30y2+18yxdxdy−6y3−6y2xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36xdxdy+42yxdxdy−12y2xdxdy+36y−30y2−18yxdxdy+6y3+6y2xdxdy
Subtract the terms
−36xdxdy+24yxdxdy−12y2xdxdy+36y−30y2+6y3+6y2xdxdy
Add the terms
−36xdxdy+24yxdxdy−6y2xdxdy+36y−30y2+6y3
dx2d2y=(6x−3yx)2−36xdxdy+24yxdxdy−6y2xdxdy+36y−30y2+6y3
Calculate
dx2d2y=3(2x−yx)2−12xdxdy+8yxdxdy−2y2xdxdy+12y−10y2+2y3
Use equation dxdy=6x−3yx−6y+2y2 to substitute
dx2d2y=3(2x−yx)2−12x×6x−3yx−6y+2y2+8yx×6x−3yx−6y+2y2−2y2x×6x−3yx−6y+2y2+12y−10y2+2y3
Solution
More Steps

Calculate
3(2x−yx)2−12x×6x−3yx−6y+2y2+8yx×6x−3yx−6y+2y2−2y2x×6x−3yx−6y+2y2+12y−10y2+2y3
Multiply the terms
3(2x−yx)2−2−y4(−6y+2y2)+8yx×6x−3yx−6y+2y2−2y2x×6x−3yx−6y+2y2+12y−10y2+2y3
Multiply the terms
More Steps

Multiply the terms
8yx×6x−3yx−6y+2y2
Rewrite the expression
8yx×x(6−3y)−6y+2y2
Cancel out the common factor x
8y×6−3y−6y+2y2
Multiply the terms
6−3y8y(−6y+2y2)
3(2x−yx)2−2−y4(−6y+2y2)+6−3y8y(−6y+2y2)−2y2x×6x−3yx−6y+2y2+12y−10y2+2y3
Multiply the terms
3(2x−yx)2−2−y4(−6y+2y2)+6−3y8y(−6y+2y2)−6−3y2y2(−6y+2y2)+12y−10y2+2y3
Calculate the sum or difference
More Steps

Evaluate
−2−y4(−6y+2y2)+6−3y8y(−6y+2y2)−6−3y2y2(−6y+2y2)+12y−10y2+2y3
Rewrite the fractions
−2−y4(−6y+2y2)+6−3y8y(−6y+2y2)+−6+3y2y2(−6y+2y2)+12y−10y2+2y3
Factor the expression
−2−y4(−6y+2y2)+−3(y−2)8y(−6y+2y2)+−6+3y2y2(−6y+2y2)+12y−10y2+2y3
Factor the expression
−2−y4(−6y+2y2)+−3(y−2)8y(−6y+2y2)+3(y−2)2y2(−6y+2y2)+12y−10y2+2y3
Reduce fractions to a common denominator
−(2−y)(−3)4(−6y+2y2)(−3)+−3(y−2)(−1)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+−3(−1)(y−2)12y(−3)(−1)(y−2)−−3(−1)(y−2)10y2(−3)(−1)(y−2)+−3(−1)(y−2)2y3(−3)(−1)(y−2)
Use the commutative property to reorder the terms
−−3(2−y)4(−6y+2y2)(−3)+−3(y−2)(−1)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+−3(−1)(y−2)12y(−3)(−1)(y−2)−−3(−1)(y−2)10y2(−3)(−1)(y−2)+−3(−1)(y−2)2y3(−3)(−1)(y−2)
Rewrite the expression
−−3(2−y)4(−6y+2y2)(−3)+3(y−2)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+−3(−1)(y−2)12y(−3)(−1)(y−2)−−3(−1)(y−2)10y2(−3)(−1)(y−2)+−3(−1)(y−2)2y3(−3)(−1)(y−2)
Rewrite the expression
−−3(2−y)4(−6y+2y2)(−3)+3(y−2)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+3(y−2)12y(−3)(−1)(y−2)−−3(−1)(y−2)10y2(−3)(−1)(y−2)+−3(−1)(y−2)2y3(−3)(−1)(y−2)
Rewrite the expression
−−3(2−y)4(−6y+2y2)(−3)+3(y−2)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+3(y−2)12y(−3)(−1)(y−2)−3(y−2)10y2(−3)(−1)(y−2)+−3(−1)(y−2)2y3(−3)(−1)(y−2)
Rewrite the expression
−−3(2−y)4(−6y+2y2)(−3)+3(y−2)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+3(y−2)12y(−3)(−1)(y−2)−3(y−2)10y2(−3)(−1)(y−2)+3(y−2)2y3(−3)(−1)(y−2)
Rewrite the expression
−3(y−2)4(−6y+2y2)(−3)+3(y−2)8y(−6y+2y2)(−1)+3(y−2)2y2(−6y+2y2)+3(y−2)12y(−3)(−1)(y−2)−3(y−2)10y2(−3)(−1)(y−2)+3(y−2)2y3(−3)(−1)(y−2)
Write all numerators above the common denominator
3(y−2)−4(−6y+2y2)(−3)+8y(−6y+2y2)(−1)+2y2(−6y+2y2)+12y(−3)(−1)(y−2)−10y2(−3)(−1)(y−2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+8y(−6y+2y2)(−1)+2y2(−6y+2y2)+12y(−3)(−1)(y−2)−10y2(−3)(−1)(y−2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+48y2−16y3+2y2(−6y+2y2)+12y(−3)(−1)(y−2)−10y2(−3)(−1)(y−2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+48y2−16y3−12y3+4y4+12y(−3)(−1)(y−2)−10y2(−3)(−1)(y−2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+48y2−16y3−12y3+4y4+36y2−72y−10y2(−3)(−1)(y−2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+48y2−16y3−12y3+4y4+36y2−72y−(30y3−60y2)+2y3(−3)(−1)(y−2)
Multiply the terms
3(y−2)−(72y−24y2)+48y2−16y3−12y3+4y4+36y2−72y−(30y3−60y2)+6y4−12y3
Calculate the sum or difference
3(y−2)−144y+168y2−70y3+10y4
3(2x−yx)23(y−2)−144y+168y2−70y3+10y4
Multiply by the reciprocal
3(y−2)−144y+168y2−70y3+10y4×3(2x−yx)21
Multiply the terms
3(y−2)×3(2x−yx)2−144y+168y2−70y3+10y4
Multiply the terms
9(y−2)(2x−yx)2−144y+168y2−70y3+10y4
Expand the expression
More Steps

Evaluate
9(y−2)(2x−yx)2
Expand the expression
9(y−2)(4x2−4x2y+y2x2)
Multiply the terms
(9y−18)(4x2−4x2y+y2x2)
Apply the distributive property
9y×4x2−9y×4x2y+9y×y2x2−18×4x2−(−18×4x2y)−18y2x2
Multiply the numbers
36yx2−9y×4x2y+9y×y2x2−18×4x2−(−18×4x2y)−18y2x2
Multiply the terms
36yx2−36y2x2+9y×y2x2−18×4x2−(−18×4x2y)−18y2x2
Multiply the terms
36yx2−36y2x2+9y3x2−18×4x2−(−18×4x2y)−18y2x2
Multiply the numbers
36yx2−36y2x2+9y3x2−72x2−(−18×4x2y)−18y2x2
Multiply the numbers
36yx2−36y2x2+9y3x2−72x2−(−72x2y)−18y2x2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36yx2−36y2x2+9y3x2−72x2+72x2y−18y2x2
Add the terms
108yx2−36y2x2+9y3x2−72x2−18y2x2
Subtract the terms
108yx2−54y2x2+9y3x2−72x2
108yx2−54y2x2+9y3x2−72x2−144y+168y2−70y3+10y4
dx2d2y=108yx2−54y2x2+9y3x2−72x2−144y+168y2−70y3+10y4
Show Solution
