Question
Solve the equation
Solve for x
Solve for y
x=0
Evaluate
(x2+92−1)x2y2=0
Simplify
More Steps

Evaluate
(x2+92−1)x2y2
Subtract the numbers
(x2+91)x2y2
Multiply the first two terms
x2(x2+91)y2
x2(x2+91)y2=0
Rewrite the expression
y2x2(x2+91)=0
Elimination the left coefficient
x2(x2+91)=0
Separate the equation into 2 possible cases
x2=0x2+91=0
The only way a power can be 0 is when the base equals 0
x=0x2+91=0
Solve the equation
More Steps

Evaluate
x2+91=0
Move the constant to the right-hand side and change its sign
x2=0−91
Removing 0 doesn't change the value,so remove it from the expression
x2=−91
Since the left-hand side is always positive or 0,and the right-hand side is always negative,the statement is false for any value of x
x∈/R
x=0x∈/R
Solution
x=0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
(x2+92−1)x2y2=0
Simplify
More Steps

Evaluate
(x2+92−1)x2y2
Subtract the numbers
(x2+91)x2y2
Multiply the first two terms
x2(x2+91)y2
x2(x2+91)y2=0
To test if the graph of x2(x2+91)y2=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2((−x)2+91)(−y)2=0
Evaluate
More Steps

Evaluate
(−x)2((−x)2+91)(−y)2
Rewrite the expression
(−x)2(x2+91)(−y)2
Multiply the terms
x2y2(x2+91)
x2y2(x2+91)=0
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=−91×∣sec(θ)∣r=−−91×∣sec(θ)∣
Evaluate
(x2+92−1)x2y2=0
Evaluate
More Steps

Evaluate
(x2+92−1)x2y2
Subtract the numbers
(x2+91)x2y2
Multiply the first two terms
x2(x2+91)y2
x2(x2+91)y2=0
Move the expression to the left side
x4y2+91x2y2=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(cos(θ)×r)4(sin(θ)×r)2+91(cos(θ)×r)2(sin(θ)×r)2=0
Factor the expression
cos4(θ)sin2(θ)×r6+91cos2(θ)sin2(θ)×r4=0
Simplify the expression
cos4(θ)sin2(θ)×r6+(91cos2(θ)−91cos4(θ))r4=0
Factor the expression
r4(cos4(θ)(rsin(θ))2+91cos2(θ)−91cos4(θ))=0
When the product of factors equals 0,at least one factor is 0
r4=0cos4(θ)(rsin(θ))2+91cos2(θ)−91cos4(θ)=0
Evaluate
r=0cos4(θ)(rsin(θ))2+91cos2(θ)−91cos4(θ)=0
Solution
More Steps

Factor the expression
cos4(θ)sin2(θ)×r2+91cos2(θ)−91cos4(θ)=0
Subtract the terms
cos4(θ)sin2(θ)×r2+91cos2(θ)−91cos4(θ)−(91cos2(θ)−91cos4(θ))=0−(91cos2(θ)−91cos4(θ))
Evaluate
cos4(θ)sin2(θ)×r2=−91cos2(θ)+91cos4(θ)
Divide the terms
r2=(cos(θ)sin(θ))2−91+91cos2(θ)
Simplify the expression
r2=−91sec2(θ)
Evaluate the power
r=±−91sec2(θ)
Simplify the expression
More Steps

Evaluate
−91sec2(θ)
Rewrite the expression
sec2(θ)(−91)
Calculate
∣sec(θ)∣×−91
Calculate
−91×∣sec(θ)∣
r=±(−91×∣sec(θ)∣)
Separate into possible cases
r=−91×∣sec(θ)∣r=−−91×∣sec(θ)∣
r=0r=−91×∣sec(θ)∣r=−−91×∣sec(θ)∣
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−x3+91x2yx2+91y
Calculate
(x2+92−1)⋅x2y2=0
Simplify the expression
x2(x2+91)y2=0
Take the derivative of both sides
dxd(x2(x2+91)y2)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2(x2+91)y2)
Use differentiation rules
dxd(x2)×(x2+91)×y2+x2×dxd(x2+91)×y2+x2(x2+91)×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2x3y2+182xy2+x2×dxd(x2+91)×y2+x2(x2+91)×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(x2+91)
Use differentiation rules
dxd(x2)+dxd(91)
Use dxdxn=nxn−1 to find derivative
2x+dxd(91)
Use dxd(c)=0 to find derivative
2x+0
Evaluate
2x
2x3y2+182xy2+2x3y2+x2(x2+91)×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy=dxd(0)
Calculate the derivative
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy=0
Simplify
More Steps

Evaluate
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy
Add the terms
More Steps

Evaluate
2x3y2+2x3y2
Collect like terms by calculating the sum or difference of their coefficients
(2+2)x3y2
Add the numbers
4x3y2
4x3y2+182xy2+2x4ydxdy+182x2ydxdy
Collect like terms by calculating the sum or difference of their coefficients
4x3y2+182xy2+(2x4y+182x2y)dxdy
4x3y2+182xy2+(2x4y+182x2y)dxdy=0
Move the constant to the right side
(2x4y+182x2y)dxdy=0−(4x3y2+182xy2)
Subtract the terms
More Steps

Evaluate
0−(4x3y2+182xy2)
Removing 0 doesn't change the value,so remove it from the expression
−(4x3y2+182xy2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x3y2−182xy2
(2x4y+182x2y)dxdy=−4x3y2−182xy2
Divide both sides
2x4y+182x2y(2x4y+182x2y)dxdy=2x4y+182x2y−4x3y2−182xy2
Divide the numbers
dxdy=2x4y+182x2y−4x3y2−182xy2
Solution
More Steps

Evaluate
2x4y+182x2y−4x3y2−182xy2
Rewrite the expression
2x4y+182x2y2xy(−2yx2−91y)
Rewrite the expression
2xy(x3+91x)2xy(−2yx2−91y)
Reduce the fraction
x3+91x−2yx2−91y
Use b−a=−ba=−ba to rewrite the fraction
−x3+91x2yx2+91y
dxdy=−x3+91x2yx2+91y
Show Solution

Find the second derivative
dx2d2y=x6+182x4+8281x26x4y+455x2y+16562y
Calculate
(x2+92−1)⋅x2y2=0
Simplify the expression
x2(x2+91)y2=0
Take the derivative of both sides
dxd(x2(x2+91)y2)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2(x2+91)y2)
Use differentiation rules
dxd(x2)×(x2+91)×y2+x2×dxd(x2+91)×y2+x2(x2+91)×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2x3y2+182xy2+x2×dxd(x2+91)×y2+x2(x2+91)×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(x2+91)
Use differentiation rules
dxd(x2)+dxd(91)
Use dxdxn=nxn−1 to find derivative
2x+dxd(91)
Use dxd(c)=0 to find derivative
2x+0
Evaluate
2x
2x3y2+182xy2+2x3y2+x2(x2+91)×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy=dxd(0)
Calculate the derivative
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy=0
Simplify
More Steps

Evaluate
2x3y2+182xy2+2x3y2+2x4ydxdy+182x2ydxdy
Add the terms
More Steps

Evaluate
2x3y2+2x3y2
Collect like terms by calculating the sum or difference of their coefficients
(2+2)x3y2
Add the numbers
4x3y2
4x3y2+182xy2+2x4ydxdy+182x2ydxdy
Collect like terms by calculating the sum or difference of their coefficients
4x3y2+182xy2+(2x4y+182x2y)dxdy
4x3y2+182xy2+(2x4y+182x2y)dxdy=0
Move the constant to the right side
(2x4y+182x2y)dxdy=0−(4x3y2+182xy2)
Subtract the terms
More Steps

Evaluate
0−(4x3y2+182xy2)
Removing 0 doesn't change the value,so remove it from the expression
−(4x3y2+182xy2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x3y2−182xy2
(2x4y+182x2y)dxdy=−4x3y2−182xy2
Divide both sides
2x4y+182x2y(2x4y+182x2y)dxdy=2x4y+182x2y−4x3y2−182xy2
Divide the numbers
dxdy=2x4y+182x2y−4x3y2−182xy2
Divide the numbers
More Steps

Evaluate
2x4y+182x2y−4x3y2−182xy2
Rewrite the expression
2x4y+182x2y2xy(−2yx2−91y)
Rewrite the expression
2xy(x3+91x)2xy(−2yx2−91y)
Reduce the fraction
x3+91x−2yx2−91y
Use b−a=−ba=−ba to rewrite the fraction
−x3+91x2yx2+91y
dxdy=−x3+91x2yx2+91y
Take the derivative of both sides
dxd(dxdy)=dxd(−x3+91x2yx2+91y)
Calculate the derivative
dx2d2y=dxd(−x3+91x2yx2+91y)
Use differentiation rules
dx2d2y=−(x3+91x)2dxd(2yx2+91y)×(x3+91x)−(2yx2+91y)×dxd(x3+91x)
Calculate the derivative
More Steps

Evaluate
dxd(2yx2+91y)
Use differentiation rules
dxd(2yx2)+dxd(91y)
Evaluate the derivative
4xy+2x2dxdy+dxd(91y)
Evaluate the derivative
4xy+2x2dxdy+91dxdy
dx2d2y=−(x3+91x)2(4xy+2x2dxdy+91dxdy)(x3+91x)−(2yx2+91y)×dxd(x3+91x)
Calculate the derivative
More Steps

Evaluate
dxd(x3+91x)
Use differentiation rules
dxd(x3)+dxd(91x)
Use dxdxn=nxn−1 to find derivative
3x2+dxd(91x)
Evaluate the derivative
3x2+91
dx2d2y=−(x3+91x)2(4xy+2x2dxdy+91dxdy)(x3+91x)−(2yx2+91y)(3x2+91)
Calculate
More Steps

Evaluate
(4xy+2x2dxdy+91dxdy)(x3+91x)
Use the the distributive property to expand the expression
(4xy+2x2dxdy)(x3+91x)+91dxdy×(x3+91x)
Multiply the terms
4x4y+364x2y+2x5dxdy+182x3dxdy+91dxdy×(x3+91x)
Multiply the terms
4x4y+364x2y+2x5dxdy+182x3dxdy+91x3dxdy+8281xdxdy
Calculate
4x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy
dx2d2y=−(x3+91x)24x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy−(2yx2+91y)(3x2+91)
Calculate
More Steps

Evaluate
(2yx2+91y)(3x2+91)
Use the the distributive property to expand the expression
(2yx2+91y)×3x2+(2yx2+91y)×91
Multiply the terms
6yx4+273yx2+(2yx2+91y)×91
Multiply the terms
6yx4+273yx2+182yx2+8281y
Calculate
6yx4+455yx2+8281y
dx2d2y=−(x3+91x)24x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy−(6yx4+455yx2+8281y)
Calculate
More Steps

Calculate
4x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy−(6yx4+455yx2+8281y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy−6yx4−455yx2−8281y
Subtract the terms
−2x4y+364x2y+2x5dxdy+273x3dxdy+8281xdxdy−455yx2−8281y
Subtract the terms
−2x4y−91x2y+2x5dxdy+273x3dxdy+8281xdxdy−8281y
dx2d2y=−(x3+91x)2−2x4y−91x2y+2x5dxdy+273x3dxdy+8281xdxdy−8281y
Use equation dxdy=−x3+91x2yx2+91y to substitute
dx2d2y=−(x3+91x)2−2x4y−91x2y+2x5(−x3+91x2yx2+91y)+273x3(−x3+91x2yx2+91y)+8281x(−x3+91x2yx2+91y)−8281y
Solution
More Steps

Calculate
−(x3+91x)2−2x4y−91x2y+2x5(−x3+91x2yx2+91y)+273x3(−x3+91x2yx2+91y)+8281x(−x3+91x2yx2+91y)−8281y
Multiply
More Steps

Multiply the terms
2x5(−x3+91x2yx2+91y)
Any expression multiplied by 1 remains the same
−2x5×x3+91x2yx2+91y
Multiply the terms
−x2+912x4(2yx2+91y)
−(x3+91x)2−2x4y−91x2y−x2+912x4(2yx2+91y)+273x3(−x3+91x2yx2+91y)+8281x(−x3+91x2yx2+91y)−8281y
Multiply
More Steps

Multiply the terms
273x3(−x3+91x2yx2+91y)
Any expression multiplied by 1 remains the same
−273x3×x3+91x2yx2+91y
Multiply the terms
−x2+91273x2(2yx2+91y)
−(x3+91x)2−2x4y−91x2y−x2+912x4(2yx2+91y)−x2+91273x2(2yx2+91y)+8281x(−x3+91x2yx2+91y)−8281y
Multiply
More Steps

Multiply the terms
8281x(−x3+91x2yx2+91y)
Any expression multiplied by 1 remains the same
−8281x×x3+91x2yx2+91y
Multiply the terms
−x2+918281(2yx2+91y)
−(x3+91x)2−2x4y−91x2y−x2+912x4(2yx2+91y)−x2+91273x2(2yx2+91y)−x2+918281(2yx2+91y)−8281y
Subtract the terms
More Steps

Evaluate
−2x4y−91x2y−x2+912x4(2yx2+91y)−x2+91273x2(2yx2+91y)−x2+918281(2yx2+91y)−8281y
Reduce fractions to a common denominator
−x2+912x4y(x2+91)−x2+9191x2y(x2+91)−x2+912x4(2yx2+91y)−x2+91273x2(2yx2+91y)−x2+918281(2yx2+91y)−x2+918281y(x2+91)
Write all numerators above the common denominator
x2+91−2x4y(x2+91)−91x2y(x2+91)−2x4(2yx2+91y)−273x2(2yx2+91y)−8281(2yx2+91y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−91x2y(x2+91)−2x4(2yx2+91y)−273x2(2yx2+91y)−8281(2yx2+91y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−(91x4y+8281x2y)−2x4(2yx2+91y)−273x2(2yx2+91y)−8281(2yx2+91y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−(91x4y+8281x2y)−(4yx6+182yx4)−273x2(2yx2+91y)−8281(2yx2+91y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−(91x4y+8281x2y)−(4yx6+182yx4)−(546yx4+24843yx2)−8281(2yx2+91y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−(91x4y+8281x2y)−(4yx6+182yx4)−(546yx4+24843yx2)−(16562yx2+753571y)−8281y(x2+91)
Multiply the terms
x2+91−(2x6y+182x4y)−(91x4y+8281x2y)−(4yx6+182yx4)−(546yx4+24843yx2)−(16562yx2+753571y)−(8281x2y+753571y)
Subtract the terms
x2+91−6x6y−1001x4y−57967x2y−1507142y
Use b−a=−ba=−ba to rewrite the fraction
−x2+916x6y+1001x4y+57967x2y+1507142y
Factor the expression
−x2+91(x2+91)(6x4y+455x2y+16562y)
Reduce the fraction
−(6x4y+455x2y+16562y)
Calculate
−6x4y−455x2y−16562y
−(x3+91x)2−6x4y−455x2y−16562y
Use b−a=−ba=−ba to rewrite the fraction
−(−(x3+91x)26x4y+455x2y+16562y)
Calculate
(x3+91x)26x4y+455x2y+16562y
Expand the expression
More Steps

Evaluate
(x3+91x)2
Use (a+b)2=a2+2ab+b2 to expand the expression
(x3)2+2x3×91x+(91x)2
Calculate
x6+182x4+8281x2
x6+182x4+8281x26x4y+455x2y+16562y
dx2d2y=x6+182x4+8281x26x4y+455x2y+16562y
Show Solution
