Question
Solve the equation
Solve for x
Solve for y
x=−y2+1x=−−y2+1
Evaluate
(x2+y2−1)×2y3=0
Multiply the first two terms
2(x2+y2−1)y3=0
Rewrite the expression
2y3(x2+y2−1)=0
Rewrite the expression
x2+y2−1=0
Move the constant to the right side
x2=−y2+1
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−y2+1
Solution
x=−y2+1x=−−y2+1
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
(x2+y2−1)×2y3=0
Multiply the first two terms
2(x2+y2−1)y3=0
To test if the graph of 2(x2+y2−1)y3=0 is symmetry with respect to the origin,substitute -x for x and -y for y
2((−x)2+(−y)2−1)(−y)3=0
Evaluate
More Steps

Evaluate
2((−x)2+(−y)2−1)(−y)3
Calculate the sum or difference
More Steps

Evaluate
(−x)2+(−y)2−1
Rewrite the expression
x2+(−y)2−1
Rewrite the expression
x2+y2−1
2(x2+y2−1)(−y)3
Multiply the terms
More Steps

Evaluate
2(−y)3
Rewrite the expression
2(−y3)
Multiply the numbers
−2y3
−2y3(x2+y2−1)
−2y3(x2+y2−1)=0
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=1r=−1
Evaluate
(x2+y2−1)×2y3=0
Evaluate
2(x2+y2−1)y3=0
Move the expression to the left side
2x2y3+2y5−2y3=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
2(cos(θ)×r)2(sin(θ)×r)3+2(sin(θ)×r)5−2(sin(θ)×r)3=0
Factor the expression
(2cos2(θ)sin3(θ)+2sin5(θ))r5−2sin3(θ)×r3=0
Simplify the expression
2sin3(θ)×r5−2sin3(θ)×r3=0
Factor the expression
r3(2sin3(θ)×r2−2sin3(θ))=0
When the product of factors equals 0,at least one factor is 0
r3=02sin3(θ)×r2−2sin3(θ)=0
Evaluate
r=02sin3(θ)×r2−2sin3(θ)=0
Solution
More Steps

Factor the expression
2sin3(θ)×r2−2sin3(θ)=0
Subtract the terms
2sin3(θ)×r2−2sin3(θ)−(−2sin3(θ))=0−(−2sin3(θ))
Evaluate
2sin3(θ)×r2=2sin3(θ)
Divide the terms
r2=1
Evaluate the power
r=±1
Simplify the expression
r=±1
Separate into possible cases
r=1r=−1
r=0r=1r=−1
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−5y2+3x2−32xy
Calculate
(x2+y2−1)⋅2y3=0
Simplify the expression
2(x2+y2−1)y3=0
Take the derivative of both sides
dxd(2(x2+y2−1)y3)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(2(x2+y2−1)y3)
Use differentiation rules
dxd(2)×(x2+y2−1)×y3+2×dxd(x2+y2−1)×y3+2(x2+y2−1)×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(x2+y2−1)
Use differentiation rules
dxd(x2)+dxd(y2)+dxd(−1)
Use dxdxn=nxn−1 to find derivative
2x+dxd(y2)+dxd(−1)
Evaluate the derivative
2x+2ydxdy+dxd(−1)
Use dxd(c)=0 to find derivative
2x+2ydxdy+0
Evaluate
2x+2ydxdy
dxd(2)×(x2+y2−1)×y3+4xy3+4y4dxdy+2(x2+y2−1)×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
dxd(2)×(x2+y2−1)×y3+4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
Calculate
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy=dxd(0)
Calculate the derivative
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy=0
Calculate the sum or difference
More Steps

Evaluate
4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
Collect like terms by calculating the sum or difference of their coefficients
(4y4+6x2y2+6y4−6y2)dxdy
Add the terms
More Steps

Evaluate
4y4+6y4
Collect like terms by calculating the sum or difference of their coefficients
(4+6)y4
Add the numbers
10y4
(10y4+6x2y2−6y2)dxdy
4xy3+(10y4+6x2y2−6y2)dxdy=0
Move the constant to the right side
(10y4+6x2y2−6y2)dxdy=0−4xy3
Removing 0 doesn't change the value,so remove it from the expression
(10y4+6x2y2−6y2)dxdy=−4xy3
Divide both sides
10y4+6x2y2−6y2(10y4+6x2y2−6y2)dxdy=10y4+6x2y2−6y2−4xy3
Divide the numbers
dxdy=10y4+6x2y2−6y2−4xy3
Solution
More Steps

Evaluate
10y4+6x2y2−6y2−4xy3
Rewrite the expression
2(5y4+3y2x2−3y2)−4xy3
Cancel out the common factor 2
5y4+3y2x2−3y2−2xy3
Rewrite the expression
y2(5y2+3x2−3)−2xy3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
5y2+3x2−3−2xy
Use b−a=−ba=−ba to rewrite the fraction
−5y2+3x2−32xy
dxdy=−5y2+3x2−32xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=−125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+81x2−270y2x250y5+20x2y3−60y3−30x4y+12x2y+18y
Calculate
(x2+y2−1)⋅2y3=0
Simplify the expression
2(x2+y2−1)y3=0
Take the derivative of both sides
dxd(2(x2+y2−1)y3)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(2(x2+y2−1)y3)
Use differentiation rules
dxd(2)×(x2+y2−1)×y3+2×dxd(x2+y2−1)×y3+2(x2+y2−1)×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(x2+y2−1)
Use differentiation rules
dxd(x2)+dxd(y2)+dxd(−1)
Use dxdxn=nxn−1 to find derivative
2x+dxd(y2)+dxd(−1)
Evaluate the derivative
2x+2ydxdy+dxd(−1)
Use dxd(c)=0 to find derivative
2x+2ydxdy+0
Evaluate
2x+2ydxdy
dxd(2)×(x2+y2−1)×y3+4xy3+4y4dxdy+2(x2+y2−1)×dxd(y3)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
dxd(2)×(x2+y2−1)×y3+4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
Calculate
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy=dxd(0)
Calculate the derivative
4xy3+4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy=0
Calculate the sum or difference
More Steps

Evaluate
4y4dxdy+6x2y2dxdy+6y4dxdy−6y2dxdy
Collect like terms by calculating the sum or difference of their coefficients
(4y4+6x2y2+6y4−6y2)dxdy
Add the terms
More Steps

Evaluate
4y4+6y4
Collect like terms by calculating the sum or difference of their coefficients
(4+6)y4
Add the numbers
10y4
(10y4+6x2y2−6y2)dxdy
4xy3+(10y4+6x2y2−6y2)dxdy=0
Move the constant to the right side
(10y4+6x2y2−6y2)dxdy=0−4xy3
Removing 0 doesn't change the value,so remove it from the expression
(10y4+6x2y2−6y2)dxdy=−4xy3
Divide both sides
10y4+6x2y2−6y2(10y4+6x2y2−6y2)dxdy=10y4+6x2y2−6y2−4xy3
Divide the numbers
dxdy=10y4+6x2y2−6y2−4xy3
Divide the numbers
More Steps

Evaluate
10y4+6x2y2−6y2−4xy3
Rewrite the expression
2(5y4+3y2x2−3y2)−4xy3
Cancel out the common factor 2
5y4+3y2x2−3y2−2xy3
Rewrite the expression
y2(5y2+3x2−3)−2xy3
Reduce the fraction
More Steps

Evaluate
y2y3
Use the product rule aman=an−m to simplify the expression
y3−2
Subtract the terms
y1
Simplify
y
5y2+3x2−3−2xy
Use b−a=−ba=−ba to rewrite the fraction
−5y2+3x2−32xy
dxdy=−5y2+3x2−32xy
Take the derivative of both sides
dxd(dxdy)=dxd(−5y2+3x2−32xy)
Calculate the derivative
dx2d2y=dxd(−5y2+3x2−32xy)
Use differentiation rules
dx2d2y=−(5y2+3x2−3)2dxd(2xy)×(5y2+3x2−3)−2xy×dxd(5y2+3x2−3)
Calculate the derivative
More Steps

Evaluate
dxd(2xy)
Use differentiation rules
dxd(2)×xy+2×dxd(x)×y+2x×dxd(y)
Use dxdxn=nxn−1 to find derivative
dxd(2)×xy+2y+2x×dxd(y)
Evaluate the derivative
dxd(2)×xy+2y+2xdxdy
Calculate
2y+2xdxdy
dx2d2y=−(5y2+3x2−3)2(2y+2xdxdy)(5y2+3x2−3)−2xy×dxd(5y2+3x2−3)
Calculate the derivative
More Steps

Evaluate
dxd(5y2+3x2−3)
Use differentiation rules
dxd(5y2)+dxd(3x2)+dxd(−3)
Evaluate the derivative
10ydxdy+dxd(3x2)+dxd(−3)
Evaluate the derivative
10ydxdy+6x+dxd(−3)
Use dxd(c)=0 to find derivative
10ydxdy+6x+0
Evaluate
10ydxdy+6x
dx2d2y=−(5y2+3x2−3)2(2y+2xdxdy)(5y2+3x2−3)−2xy(10ydxdy+6x)
Calculate
More Steps

Evaluate
(2y+2xdxdy)(5y2+3x2−3)
Use the the distributive property to expand the expression
2y(5y2+3x2−3)+2xdxdy×(5y2+3x2−3)
Multiply the terms
10y3+6yx2−6y+2xdxdy×(5y2+3x2−3)
Multiply the terms
10y3+6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy
dx2d2y=−(5y2+3x2−3)210y3+6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy−2xy(10ydxdy+6x)
Calculate
More Steps

Evaluate
2xy(10ydxdy+6x)
Use the the distributive property to expand the expression
2xy×10ydxdy+2xy×6x
Multiply the terms
20xy2dxdy+2xy×6x
Multiply the terms
20xy2dxdy+12x2y
dx2d2y=−(5y2+3x2−3)210y3+6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy−(20xy2dxdy+12x2y)
Calculate
More Steps

Calculate
10y3+6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy−(20xy2dxdy+12x2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10y3+6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy−20xy2dxdy−12x2y
Subtract the terms
10y3−6yx2−6y+10xy2dxdy+6x3dxdy−6xdxdy−20xy2dxdy
Subtract the terms
10y3−6yx2−6y−10xy2dxdy+6x3dxdy−6xdxdy
dx2d2y=−(5y2+3x2−3)210y3−6yx2−6y−10xy2dxdy+6x3dxdy−6xdxdy
Use equation dxdy=−5y2+3x2−32xy to substitute
dx2d2y=−(5y2+3x2−3)210y3−6yx2−6y−10xy2(−5y2+3x2−32xy)+6x3(−5y2+3x2−32xy)−6x(−5y2+3x2−32xy)
Solution
More Steps

Calculate
−(5y2+3x2−3)210y3−6yx2−6y−10xy2(−5y2+3x2−32xy)+6x3(−5y2+3x2−32xy)−6x(−5y2+3x2−32xy)
Multiply
More Steps

Multiply the terms
−10xy2(−5y2+3x2−32xy)
Any expression multiplied by 1 remains the same
10xy2×5y2+3x2−32xy
Multiply the terms
5y2+3x2−310xy2×2xy
Multiply the terms
5y2+3x2−320x2y3
−(5y2+3x2−3)210y3−6yx2−6y+5y2+3x2−320x2y3+6x3(−5y2+3x2−32xy)−6x(−5y2+3x2−32xy)
Multiply
More Steps

Multiply the terms
6x3(−5y2+3x2−32xy)
Any expression multiplied by 1 remains the same
−6x3×5y2+3x2−32xy
Multiply the terms
−5y2+3x2−312x4y
−(5y2+3x2−3)210y3−6yx2−6y+5y2+3x2−320x2y3−5y2+3x2−312x4y−6x(−5y2+3x2−32xy)
Multiply
More Steps

Multiply the terms
−6x(−5y2+3x2−32xy)
Any expression multiplied by 1 remains the same
6x×5y2+3x2−32xy
Multiply the terms
5y2+3x2−36x×2xy
Multiply the terms
5y2+3x2−312x2y
−(5y2+3x2−3)210y3−6yx2−6y+5y2+3x2−320x2y3−5y2+3x2−312x4y+5y2+3x2−312x2y
Calculate the sum or difference
More Steps

Evaluate
10y3−6yx2−6y+5y2+3x2−320x2y3−5y2+3x2−312x4y+5y2+3x2−312x2y
Reduce fractions to a common denominator
5y2+3x2−310y3(5y2+3x2−3)−5y2+3x2−36yx2(5y2+3x2−3)−5y2+3x2−36y(5y2+3x2−3)+5y2+3x2−320x2y3−5y2+3x2−312x4y+5y2+3x2−312x2y
Write all numerators above the common denominator
5y2+3x2−310y3(5y2+3x2−3)−6yx2(5y2+3x2−3)−6y(5y2+3x2−3)+20x2y3−12x4y+12x2y
Multiply the terms
5y2+3x2−350y5+30x2y3−30y3−6yx2(5y2+3x2−3)−6y(5y2+3x2−3)+20x2y3−12x4y+12x2y
Multiply the terms
5y2+3x2−350y5+30x2y3−30y3−(30y3x2+18x4y−18yx2)−6y(5y2+3x2−3)+20x2y3−12x4y+12x2y
Multiply the terms
5y2+3x2−350y5+30x2y3−30y3−(30y3x2+18x4y−18yx2)−(30y3+18x2y−18y)+20x2y3−12x4y+12x2y
Calculate the sum or difference
5y2+3x2−350y5+20x2y3−60y3−30x4y+12x2y+18y
−(5y2+3x2−3)25y2+3x2−350y5+20x2y3−60y3−30x4y+12x2y+18y
Divide the terms
More Steps

Evaluate
(5y2+3x2−3)25y2+3x2−350y5+20x2y3−60y3−30x4y+12x2y+18y
Multiply by the reciprocal
5y2+3x2−350y5+20x2y3−60y3−30x4y+12x2y+18y×(5y2+3x2−3)21
Multiply the terms
(5y2+3x2−3)(5y2+3x2−3)250y5+20x2y3−60y3−30x4y+12x2y+18y
Multiply the terms
(5y2+3x2−3)350y5+20x2y3−60y3−30x4y+12x2y+18y
−(5y2+3x2−3)350y5+20x2y3−60y3−30x4y+12x2y+18y
Evaluate the power
More Steps

Evaluate
(5y2+3x2−3)3
Use (a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc to expand the expression
(5y2)3+(3x2)3+(−3)3+3(5y2)2×3x2+3(5y2)2(−3)+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+(3x2)3+(−3)3+3(5y2)2×3x2+3(5y2)2(−3)+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6+(−3)3+3(5y2)2×3x2+3(5y2)2(−3)+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+3(5y2)2×3x2+3(5y2)2(−3)+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2+3(5y2)2(−3)+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+3(3x2)2×5y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+135x4y2+3(3x2)2(−3)+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+3(−3)2×5y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+3(−3)2×3x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+34x2+6×5y2×3x2(−3)
Calculate
125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+34x2−270y2x2
Evaluate the power
125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+81x2−270y2x2
−125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+81x2−270y2x250y5+20x2y3−60y3−30x4y+12x2y+18y
dx2d2y=−125y6+27x6−27+225y4x2−225y4+135x4y2−81x4+135y2+81x2−270y2x250y5+20x2y3−60y3−30x4y+12x2y+18y
Show Solution
