Question
Simplify the expression
xx2x−4−4x+8
Evaluate
(x2(2x−4)21)21(x−2(2x−4)21)21
Multiply the terms
(x3(2x−4)21−4x3+8x2)21
Use anm=nam to transform the expression
(x32x−4−4x3+8x2)21
Use anm=nam to transform the expression
x32x−4−4x3+8x2
Factor the expression
x2(x2x−4−4x+8)
Solution
xx2x−4−4x+8
Show Solution

Find the roots
x1=2,x2=4
Evaluate
(x2(2x−4)21)21(x−2(2x−4)21)21
To find the roots of the expression,set the expression equal to 0
(x2(2x−4)21)21(x−2(2x−4)21)21=0
Find the domain
More Steps

Evaluate
⎩⎨⎧2x−4≥0x2(2x−4)21≥0x−2(2x−4)21≥0
Calculate
More Steps

Evaluate
2x−4≥0
Move the constant to the right side
2x≥0+4
Removing 0 doesn't change the value,so remove it from the expression
2x≥4
Divide both sides
22x≥24
Divide the numbers
x≥24
Divide the numbers
x≥2
⎩⎨⎧x≥2x2(2x−4)21≥0x−2(2x−4)21≥0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is true for any value of x
⎩⎨⎧x≥2x∈Rx−2(2x−4)21≥0
Calculate
More Steps

Evaluate
x−2(2x−4)21≥0
Move the expression to the right side
−2(2x−4)21≥−x
Change the signs on both sides of the inequality and flip the inequality sign
2(2x−4)21≤x
Separate the inequality into 2 possible cases
2(2x−4)21≤x,x≥02(2x−4)21≤x,x<0
Solve the inequality
x∈R,x≥02(2x−4)21≤x,x<0
Since the left-hand side is always positive or 0,and the right-hand side is always negative,the statement is false for any value of x
x∈R,x≥0x∈∅,x<0
Find the intersection
x≥0x∈∅,x<0
Find the intersection
x≥0x∈∅
Find the union
x≥0
⎩⎨⎧x≥2x∈Rx≥0
Find the intersection
x≥2
(x2(2x−4)21)21(x−2(2x−4)21)21=0,x≥2
Calculate
(x2(2x−4)21)21(x−2(2x−4)21)21=0
Multiply the terms
(x3(2x−4)21−4x3+8x2)21=0
The only way a root could be 0 is when the radicand equals 0
x3(2x−4)21−4x3+8x2=0
Factor the expression
More Steps

Factor the expression
x3(2x−4)21−4x3+8x2
Factor the expression
x2(2×x(x−2)21−4x+8)
Simplify
2×x2(x(x−2)21−22×x+42)
2×x2(x(x−2)21−22×x+42)=0
Elimination the left coefficient
x2(x(x−2)21−22×x+42)=0
Separate the equation into 2 possible cases
x2=0x(x−2)21−22×x+42=0
The only way a power can be 0 is when the base equals 0
x=0x(x−2)21−22×x+42=0
Solve the equation
More Steps

Evaluate
x(x−2)21−22×x+42=0
Move the expression to the right side
x(x−2)21=22×x−42
Raise both sides of the equation to the 2-th power to eliminate the isolated 2-th root
(x(x−2)21)2=(22×x−42)2
Evaluate the power
x3−2x2=8x2−32x+32
Move the expression to the left side
x3−2x2−(8x2−32x+32)=0
Subtract the terms
More Steps

Evaluate
x3−2x2−(8x2−32x+32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x3−2x2−8x2+32x−32
Subtract the terms
x3−10x2+32x−32
x3−10x2+32x−32=0
Factor the expression
(x−4)2(x−2)=0
Separate the equation into 2 possible cases
(x−4)2=0x−2=0
Solve the equation
More Steps

Evaluate
(x−4)2=0
The only way a power can be 0 is when the base equals 0
x−4=0
Move the constant to the right-hand side and change its sign
x=0+4
Removing 0 doesn't change the value,so remove it from the expression
x=4
x=4x−2=0
Solve the equation
More Steps

Evaluate
x−2=0
Move the constant to the right side
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=4x=2
x=0x=4x=2
Check if the solution is in the defined range
x=0x=4x=2,x≥2
Find the intersection of the solution and the defined range
x=4x=2
Solution
x1=2,x2=4
Show Solution
