Question
Simplify the expression
x44x−8
Evaluate
(x2(2x−4)21)21
Use anm=nam to transform the expression
x2(2x−4)21
Write the expression as a product where the root of one of the factors can be evaluated
2x2(x−2)21
Rewrite the expression
x2×2(x−2)21
Calculate
x2(x−2)21
Solution
More Steps

Calculate
2(x−2)21
Use anm=nam to transform the expression
2x−2
Use a=nan to transform the expression
22×x−2
Calculate
22(x−2)
Calculate
4(x−2)
Use mna=mna to simplify the expression
44(x−2)
Calculate
44x−8
x44x−8
Show Solution

Find the roots
x=2
Evaluate
(x2(2x−4)21)21
To find the roots of the expression,set the expression equal to 0
(x2(2x−4)21)21=0
Find the domain
More Steps

Evaluate
{2x−4≥0x2(2x−4)21≥0
Calculate
More Steps

Evaluate
2x−4≥0
Move the constant to the right side
2x≥0+4
Removing 0 doesn't change the value,so remove it from the expression
2x≥4
Divide both sides
22x≥24
Divide the numbers
x≥24
Divide the numbers
x≥2
{x≥2x2(2x−4)21≥0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is true for any value of x
{x≥2x∈R
Find the intersection
x≥2
(x2(2x−4)21)21=0,x≥2
Calculate
(x2(2x−4)21)21=0
The only way a root could be 0 is when the radicand equals 0
x2(2x−4)21=0
Separate the equation into 2 possible cases
x2=0(2x−4)21=0
The only way a power can be 0 is when the base equals 0
x=0(2x−4)21=0
Solve the equation
More Steps

Evaluate
(2x−4)21=0
The only way a root could be 0 is when the radicand equals 0
2x−4=0
Move the constant to the right-hand side and change its sign
2x=0+4
Removing 0 doesn't change the value,so remove it from the expression
2x=4
Divide both sides
22x=24
Divide the numbers
x=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
x=2
x=0x=2
Check if the solution is in the defined range
x=0x=2,x≥2
Solution
x=2
Show Solution
