Question
Simplify the expression
2x2−x4+3x3
Evaluate
x2×2−(x−3)x3
Use the commutative property to reorder the terms
2x2−(x−3)x3
Multiply the terms
2x2−x3(x−3)
Solution
More Steps

Evaluate
−x3(x−3)
Apply the distributive property
−x3×x−(−x3×3)
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−x4−(−x3×3)
Use the commutative property to reorder the terms
−x4−(−3x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x4+3x3
2x2−x4+3x3
Show Solution

Factor the expression
(2−x2+3x)x2
Evaluate
x2×2−(x−3)x3
Use the commutative property to reorder the terms
2x2−(x−3)x3
Multiply the terms
2x2−x3(x−3)
Rewrite the expression
2x2−x(x−3)x2
Factor out x2 from the expression
(2−x(x−3))x2
Solution
(2−x2+3x)x2
Show Solution

Find the roots
x1=23−17,x2=0,x3=23+17
Alternative Form
x1≈−0.561553,x2=0,x3≈3.561553
Evaluate
(x2)×2−(x−3)(x3)
To find the roots of the expression,set the expression equal to 0
(x2)×2−(x−3)(x3)=0
Calculate
x2×2−(x−3)(x3)=0
Calculate
x2×2−(x−3)x3=0
Use the commutative property to reorder the terms
2x2−(x−3)x3=0
Multiply the terms
2x2−x3(x−3)=0
Calculate
More Steps

Evaluate
−x3(x−3)
Apply the distributive property
−x3×x−(−x3×3)
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−x4−(−x3×3)
Use the commutative property to reorder the terms
−x4−(−3x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x4+3x3
2x2−x4+3x3=0
Factor the expression
x2(2−x2+3x)=0
Separate the equation into 2 possible cases
x2=02−x2+3x=0
The only way a power can be 0 is when the base equals 0
x=02−x2+3x=0
Solve the equation
More Steps

Evaluate
2−x2+3x=0
Rewrite in standard form
−x2+3x+2=0
Multiply both sides
x2−3x−2=0
Substitute a=1,b=−3 and c=−2 into the quadratic formula x=2a−b±b2−4ac
x=23±(−3)2−4(−2)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−2)
Multiply the numbers
(−3)2−(−8)
Rewrite the expression
32−(−8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+8
Evaluate the power
9+8
Add the numbers
17
x=23±17
Separate the equation into 2 possible cases
x=23+17x=23−17
x=0x=23+17x=23−17
Solution
x1=23−17,x2=0,x3=23+17
Alternative Form
x1≈−0.561553,x2=0,x3≈3.561553
Show Solution
