Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
6−3001+53≤x≤63001+53
Alternative Form
x∈[6−3001+53,63001+53]
Evaluate
15x2−57x−1≤95−2x
Multiply both sides of the inequality by 45
(15x2−57x−1)×45≤95−2x×45
Multiply the terms
More Steps

Multiply the terms
(15x2−57x−1)×45
Apply the distributive property
15x2×45−57x−1×45
Reduce the fraction
x2×3+(−7x+1)×9
Multiply the terms
3x2−63x+9
3x2−63x+9≤95−2x×45
Multiply the terms
More Steps

Multiply the terms
95−2x×45
Reduce the fraction
(5−2x)×5
Multiply the terms
25−10x
3x2−63x+9≤25−10x
Move the expression to the left side
3x2−63x+9−(25−10x)≤0
Calculate the sum or difference
More Steps

Evaluate
3x2−63x+9−(25−10x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−63x+9−25+10x
Add the terms
More Steps

Evaluate
−63x+10x
Collect like terms by calculating the sum or difference of their coefficients
(−63+10)x
Add the numbers
−53x
3x2−53x+9−25
Subtract the numbers
3x2−53x−16
3x2−53x−16≤0
Rewrite the expression
3x2−53x−16=0
Add or subtract both sides
3x2−53x=16
Divide both sides
33x2−53x=316
Evaluate
x2−353x=316
Add the same value to both sides
x2−353x+362809=316+362809
Simplify the expression
(x−653)2=363001
Take the root of both sides of the equation and remember to use both positive and negative roots
x−653=±363001
Simplify the expression
x−653=±63001
Separate the equation into 2 possible cases
x−653=63001x−653=−63001
Solve the equation
More Steps

Evaluate
x−653=63001
Move the constant to the right-hand side and change its sign
x=63001+653
Write all numerators above the common denominator
x=63001+53
x=63001+53x−653=−63001
Solve the equation
More Steps

Evaluate
x−653=−63001
Move the constant to the right-hand side and change its sign
x=−63001+653
Write all numerators above the common denominator
x=6−3001+53
x=63001+53x=6−3001+53
Determine the test intervals using the critical values
x<6−3001+536−3001+53<x<63001+53x>63001+53
Choose a value form each interval
x1=−1x2=9x3=19
To determine if x<6−3001+53 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
3(−1)2−63(−1)+9≤25−10(−1)
Simplify
More Steps

Evaluate
3(−1)2−63(−1)+9
Evaluate the power
3×1−63(−1)+9
Any expression multiplied by 1 remains the same
3−63(−1)+9
Simplify
3+63+9
Add the numbers
75
75≤25−10(−1)
Simplify
More Steps

Evaluate
25−10(−1)
Simplify
25−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
25+10
Add the numbers
35
75≤35
Check the inequality
false
x<6−3001+53 is not a solutionx2=9x3=19
To determine if 6−3001+53<x<63001+53 is the solution to the inequality,test if the chosen value x=9 satisfies the initial inequality
More Steps

Evaluate
3×92−63×9+9≤25−10×9
Simplify
More Steps

Evaluate
3×92−63×9+9
Multiply the terms
243−63×9+9
Multiply the numbers
243−567+9
Calculate the sum or difference
−315
−315≤25−10×9
Simplify
More Steps

Evaluate
25−10×9
Multiply the numbers
25−90
Subtract the numbers
−65
−315≤−65
Check the inequality
true
x<6−3001+53 is not a solution6−3001+53<x<63001+53 is the solutionx3=19
To determine if x>63001+53 is the solution to the inequality,test if the chosen value x=19 satisfies the initial inequality
More Steps

Evaluate
3×192−63×19+9≤25−10×19
Simplify
More Steps

Evaluate
3×192−63×19+9
Multiply the terms
1083−63×19+9
Multiply the numbers
1083−1197+9
Calculate the sum or difference
−105
−105≤25−10×19
Simplify
More Steps

Evaluate
25−10×19
Multiply the numbers
25−190
Subtract the numbers
−165
−105≤−165
Check the inequality
false
x<6−3001+53 is not a solution6−3001+53<x<63001+53 is the solutionx>63001+53 is not a solution
The original inequality is a nonstrict inequality,so include the critical value in the solution
6−3001+53≤x≤63001+53 is the solution
Solution
6−3001+53≤x≤63001+53
Alternative Form
x∈[6−3001+53,63001+53]
Show Solution
