Question
Simplify the expression
4x6−6x5
Evaluate
x2(2x−3)×2x3
Multiply the terms with the same base by adding their exponents
x2+3(2x−3)×2
Add the numbers
x5(2x−3)×2
Use the commutative property to reorder the terms
2x5(2x−3)
Apply the distributive property
2x5×2x−2x5×3
Multiply the terms
More Steps

Evaluate
2x5×2x
Multiply the numbers
4x5×x
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
4x6
4x6−2x5×3
Solution
4x6−6x5
Show Solution

Find the roots
x1=0,x2=23
Alternative Form
x1=0,x2=1.5
Evaluate
(x2)(2x−3)(2x3)
To find the roots of the expression,set the expression equal to 0
(x2)(2x−3)(2x3)=0
Calculate
x2(2x−3)(2x3)=0
Multiply the terms
x2(2x−3)×2x3=0
Multiply
More Steps

Multiply the terms
x2(2x−3)×2x3
Multiply the terms with the same base by adding their exponents
x2+3(2x−3)×2
Add the numbers
x5(2x−3)×2
Use the commutative property to reorder the terms
2x5(2x−3)
2x5(2x−3)=0
Elimination the left coefficient
x5(2x−3)=0
Separate the equation into 2 possible cases
x5=02x−3=0
The only way a power can be 0 is when the base equals 0
x=02x−3=0
Solve the equation
More Steps

Evaluate
2x−3=0
Move the constant to the right-hand side and change its sign
2x=0+3
Removing 0 doesn't change the value,so remove it from the expression
2x=3
Divide both sides
22x=23
Divide the numbers
x=23
x=0x=23
Solution
x1=0,x2=23
Alternative Form
x1=0,x2=1.5
Show Solution
