Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
x>8
Alternative Form
x∈(8,+∞)
Evaluate
x2(x−8)>0
Rewrite the expression
x2(x−8)=0
Separate the equation into 2 possible cases
x2=0x−8=0
The only way a power can be 0 is when the base equals 0
x=0x−8=0
Solve the equation
More Steps

Evaluate
x−8=0
Move the constant to the right-hand side and change its sign
x=0+8
Removing 0 doesn't change the value,so remove it from the expression
x=8
x=0x=8
Determine the test intervals using the critical values
x<00<x<8x>8
Choose a value form each interval
x1=−1x2=4x3=9
To determine if x<0 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
(−1)2(−1−8)>0
Simplify
More Steps

Evaluate
(−1)2(−1−8)
Subtract the numbers
(−1)2(−9)
Evaluate the power
1×(−9)
Any expression multiplied by 1 remains the same
−9
−9>0
Check the inequality
false
x<0 is not a solutionx2=4x3=9
To determine if 0<x<8 is the solution to the inequality,test if the chosen value x=4 satisfies the initial inequality
More Steps

Evaluate
42(4−8)>0
Simplify
More Steps

Evaluate
42(4−8)
Subtract the numbers
42(−4)
Multiply the numbers
−42×4
Calculate the product
−43
−43>0
Calculate
−64>0
Check the inequality
false
x<0 is not a solution0<x<8 is not a solutionx3=9
To determine if x>8 is the solution to the inequality,test if the chosen value x=9 satisfies the initial inequality
More Steps

Evaluate
92(9−8)>0
Simplify
More Steps

Evaluate
92(9−8)
Subtract the numbers
92×1
Any expression multiplied by 1 remains the same
92
92>0
Calculate
81>0
Check the inequality
true
x<0 is not a solution0<x<8 is not a solutionx>8 is the solution
Solution
x>8
Alternative Form
x∈(8,+∞)
Show Solution
