Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=500−5002+69,x2=500+5002+69
Alternative Form
x1≈−0.068995,x2≈1000.068995
Evaluate
x2−10x×100=69
Multiply the terms
x2−1000x=69
Move the expression to the left side
x2−1000x−69=0
Substitute a=1,b=−1000 and c=−69 into the quadratic formula x=2a−b±b2−4ac
x=21000±(−1000)2−4(−69)
Simplify the expression
More Steps

Evaluate
(−1000)2−4(−69)
Multiply the numbers
More Steps

Evaluate
4(−69)
Multiplying or dividing an odd number of negative terms equals a negative
−4×69
Multiply the numbers
−276
(−1000)2−(−276)
Rewrite the expression
10002−(−276)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10002+276
x=21000±10002+276
Simplify the radical expression
x=21000±25002+69
Separate the equation into 2 possible cases
x=21000+25002+69x=21000−25002+69
Simplify the expression
More Steps

Evaluate
x=21000+25002+69
Divide the terms
More Steps

Evaluate
21000+25002+69
Rewrite the expression
22(500+5002+69)
Reduce the fraction
500+5002+69
x=500+5002+69
x=500+5002+69x=21000−25002+69
Simplify the expression
More Steps

Evaluate
x=21000−25002+69
Divide the terms
More Steps

Evaluate
21000−25002+69
Rewrite the expression
22(500−5002+69)
Reduce the fraction
500−5002+69
x=500−5002+69
x=500+5002+69x=500−5002+69
Solution
x1=500−5002+69,x2=500+5002+69
Alternative Form
x1≈−0.068995,x2≈1000.068995
Show Solution
