Question
Solve the equation
x1=−2424,x2=2424
Alternative Form
x1≈−1.106682,x2≈1.106682
Evaluate
x2×4x2×2−12=0
Multiply
More Steps

Evaluate
x2×4x2×2
Multiply the terms with the same base by adding their exponents
x2+2×4×2
Add the numbers
x4×4×2
Multiply the terms
x4×8
Use the commutative property to reorder the terms
8x4
8x4−12=0
Move the constant to the right-hand side and change its sign
8x4=0+12
Removing 0 doesn't change the value,so remove it from the expression
8x4=12
Divide both sides
88x4=812
Divide the numbers
x4=812
Cancel out the common factor 4
x4=23
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±423
Simplify the expression
More Steps

Evaluate
423
To take a root of a fraction,take the root of the numerator and denominator separately
4243
Multiply by the Conjugate
42×42343×423
Simplify
42×42343×48
Multiply the numbers
More Steps

Evaluate
43×48
The product of roots with the same index is equal to the root of the product
43×8
Calculate the product
424
42×423424
Multiply the numbers
More Steps

Evaluate
42×423
The product of roots with the same index is equal to the root of the product
42×23
Calculate the product
424
Reduce the index of the radical and exponent with 4
2
2424
x=±2424
Separate the equation into 2 possible cases
x=2424x=−2424
Solution
x1=−2424,x2=2424
Alternative Form
x1≈−1.106682,x2≈1.106682
Show Solution
