Question
Simplify the expression
6x4−6x3−24x2
Evaluate
(x2×6)(x2−x−4)
Remove the parentheses
x2×6(x2−x−4)
Use the commutative property to reorder the terms
6x2(x2−x−4)
Apply the distributive property
6x2×x2−6x2×x−6x2×4
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
6x4−6x2×x−6x2×4
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
6x4−6x3−6x2×4
Solution
6x4−6x3−24x2
Show Solution

Find the roots
x1=21−17,x2=0,x3=21+17
Alternative Form
x1≈−1.561553,x2=0,x3≈2.561553
Evaluate
(x2×6)(x2−x−4)
To find the roots of the expression,set the expression equal to 0
(x2×6)(x2−x−4)=0
Use the commutative property to reorder the terms
6x2(x2−x−4)=0
Elimination the left coefficient
x2(x2−x−4)=0
Separate the equation into 2 possible cases
x2=0x2−x−4=0
The only way a power can be 0 is when the base equals 0
x=0x2−x−4=0
Solve the equation
More Steps

Evaluate
x2−x−4=0
Substitute a=1,b=−1 and c=−4 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4(−4)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−4)
Evaluate the power
1−4(−4)
Multiply the numbers
1−(−16)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+16
Add the numbers
17
x=21±17
Separate the equation into 2 possible cases
x=21+17x=21−17
x=0x=21+17x=21−17
Solution
x1=21−17,x2=0,x3=21+17
Alternative Form
x1≈−1.561553,x2=0,x3≈2.561553
Show Solution
