Question
Simplify the expression
x2−3x−25
Evaluate
(x2−3x)×x2x2×1−25
Reduce the fraction
More Steps

Evaluate
x2x2×1
Any expression multiplied by 1 remains the same
x2x2
Reduce the fraction
1
(x2−3x)×1−25
Solution
x2−3x−25
Show Solution

Find the excluded values
x=0
Evaluate
(x2−3x)×x2x2×1−25
To find the excluded values,set the denominators equal to 0
x2=0
Solution
x=0
Show Solution

Find the roots
x1=23−109,x2=23+109
Alternative Form
x1≈−3.720153,x2≈6.720153
Evaluate
(x2−3x)×x2x2×1−25
To find the roots of the expression,set the expression equal to 0
(x2−3x)×x2x2×1−25=0
The only way a power can not be 0 is when the base not equals 0
(x2−3x)×x2x2×1−25=0,x=0
Calculate
(x2−3x)×x2x2×1−25=0
Any expression multiplied by 1 remains the same
(x2−3x)×x2x2−25=0
Simplify the expression
(x2−3x)×1−25=0
Any expression multiplied by 1 remains the same
x2−3x−25=0
Substitute a=1,b=−3 and c=−25 into the quadratic formula x=2a−b±b2−4ac
x=23±(−3)2−4(−25)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−25)
Multiply the numbers
More Steps

Evaluate
4(−25)
Multiplying or dividing an odd number of negative terms equals a negative
−4×25
Multiply the numbers
−100
(−3)2−(−100)
Rewrite the expression
32−(−100)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+100
Evaluate the power
9+100
Add the numbers
109
x=23±109
Separate the equation into 2 possible cases
x=23+109x=23−109
Check if the solution is in the defined range
x=23+109x=23−109,x=0
Find the intersection of the solution and the defined range
x=23+109x=23−109
Solution
x1=23−109,x2=23+109
Alternative Form
x1≈−3.720153,x2≈6.720153
Show Solution
