Question
Simplify the expression
x4−2x3−7x2+8x+7
Evaluate
(x2−x−1)(x2−x−7)
Apply the distributive property
x2×x2−x2×x−x2×7−x×x2−(−x×x)−(−x×7)−x2−(−x)−(−7)
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
x4−x2×x−x2×7−x×x2−(−x×x)−(−x×7)−x2−(−x)−(−7)
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x4−x3−x2×7−x×x2−(−x×x)−(−x×7)−x2−(−x)−(−7)
Use the commutative property to reorder the terms
x4−x3−7x2−x×x2−(−x×x)−(−x×7)−x2−(−x)−(−7)
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
x4−x3−7x2−x3−(−x×x)−(−x×7)−x2−(−x)−(−7)
Multiply the terms
x4−x3−7x2−x3−(−x2)−(−x×7)−x2−(−x)−(−7)
Use the commutative property to reorder the terms
x4−x3−7x2−x3−(−x2)−(−7x)−x2−(−x)−(−7)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x4−x3−7x2−x3+x2+7x−x2+x+7
Subtract the terms
More Steps

Evaluate
−x3−x3
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)x3
Subtract the numbers
−2x3
x4−2x3−7x2+x2+7x−x2+x+7
Calculate the sum or difference
More Steps

Evaluate
−7x2+x2−x2
Collect like terms by calculating the sum or difference of their coefficients
(−7+1−1)x2
Calculate the sum or difference
−7x2
x4−2x3−7x2+7x+x+7
Solution
More Steps

Evaluate
7x+x
Collect like terms by calculating the sum or difference of their coefficients
(7+1)x
Add the numbers
8x
x4−2x3−7x2+8x+7
Show Solution

Find the roots
x1=21−29,x2=21−5,x3=21+5,x4=21+29
Alternative Form
x1≈−2.192582,x2≈−0.618034,x3≈1.618034,x4≈3.192582
Evaluate
(x2−x−1)(x2−x−7)
To find the roots of the expression,set the expression equal to 0
(x2−x−1)(x2−x−7)=0
Separate the equation into 2 possible cases
x2−x−1=0x2−x−7=0
Solve the equation
More Steps

Evaluate
x2−x−1=0
Substitute a=1,b=−1 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4(−1)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−1)
Evaluate the power
1−4(−1)
Simplify
1−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4
Add the numbers
5
x=21±5
Separate the equation into 2 possible cases
x=21+5x=21−5
x=21+5x=21−5x2−x−7=0
Solve the equation
More Steps

Evaluate
x2−x−7=0
Substitute a=1,b=−1 and c=−7 into the quadratic formula x=2a−b±b2−4ac
x=21±(−1)2−4(−7)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−7)
Evaluate the power
1−4(−7)
Multiply the numbers
1−(−28)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+28
Add the numbers
29
x=21±29
Separate the equation into 2 possible cases
x=21+29x=21−29
x=21+5x=21−5x=21+29x=21−29
Solution
x1=21−29,x2=21−5,x3=21+5,x4=21+29
Alternative Form
x1≈−2.192582,x2≈−0.618034,x3≈1.618034,x4≈3.192582
Show Solution
