Question
Simplify the expression
10x
Evaluate
x3x2×10x2×1
Any expression multiplied by 1 remains the same
x3x2×10x2
Multiply
More Steps

Evaluate
x2×10x2
Multiply the terms with the same base by adding their exponents
x2+2×10
Add the numbers
x4×10
x3x4×10
Reduce the fraction
More Steps

Calculate
x3x4
Use the product rule aman=an−m to simplify the expression
x4−3
Subtract the terms
x1
Simplify
x
x×10
Solution
10x
Show Solution

Find the excluded values
x=0
Evaluate
x3x2×10x2×1
To find the excluded values,set the denominators equal to 0
x3=0
Solution
x=0
Show Solution

Find the roots
x∈∅
Evaluate
x3x2×10x2×1
To find the roots of the expression,set the expression equal to 0
x3x2×10x2×1=0
The only way a power can not be 0 is when the base not equals 0
x3x2×10x2×1=0,x=0
Calculate
x3x2×10x2×1=0
Multiply the terms
More Steps

Multiply the terms
x2×10x2×1
Rewrite the expression
x2×10x2
Multiply the terms with the same base by adding their exponents
x2+2×10
Add the numbers
x4×10
Use the commutative property to reorder the terms
10x4
x310x4=0
Divide the terms
More Steps

Evaluate
x310x4
Use the product rule aman=an−m to simplify the expression
110x4−3
Simplify
10x4−3
Divide the terms
10x
10x=0
Rewrite the expression
x=0
Check if the solution is in the defined range
x=0,x=0
Solution
x∈∅
Show Solution
