Question
Simplify the expression
x4−x2+7x−12
Evaluate
x3(x×1)−(x−3)(x−4)
Remove the parentheses
x3×x×1−(x−3)(x−4)
Multiply the terms
More Steps

Multiply the terms
x3×x×1
Rewrite the expression
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
x4−(x−3)(x−4)
Rewrite the expression
x4+(−x+3)(x−4)
Solution
More Steps

Evaluate
(−x+3)(x−4)
Apply the distributive property
−x×x−(−x×4)+3x−3×4
Multiply the terms
−x2−(−x×4)+3x−3×4
Use the commutative property to reorder the terms
−x2−(−4x)+3x−3×4
Multiply the numbers
−x2−(−4x)+3x−12
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2+4x+3x−12
Add the terms
More Steps

Evaluate
4x+3x
Collect like terms by calculating the sum or difference of their coefficients
(4+3)x
Add the numbers
7x
−x2+7x−12
x4−x2+7x−12
Show Solution

Find the roots
x1≈−2.431033,x2≈1.420674
Evaluate
(x3)(x×1)−(x−3)(x−4)
To find the roots of the expression,set the expression equal to 0
(x3)(x×1)−(x−3)(x−4)=0
Calculate
x3(x×1)−(x−3)(x−4)=0
Any expression multiplied by 1 remains the same
x3×x−(x−3)(x−4)=0
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
x4−(x−3)(x−4)=0
Rewrite the expression
x4+(−x+3)(x−4)=0
Calculate
More Steps

Evaluate
(−x+3)(x−4)
Apply the distributive property
−x×x−(−x×4)+3x−3×4
Multiply the terms
−x2−(−x×4)+3x−3×4
Use the commutative property to reorder the terms
−x2−(−4x)+3x−3×4
Multiply the numbers
−x2−(−4x)+3x−12
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2+4x+3x−12
Add the terms
More Steps

Evaluate
4x+3x
Collect like terms by calculating the sum or difference of their coefficients
(4+3)x
Add the numbers
7x
−x2+7x−12
x4−x2+7x−12=0
Calculate
x≈1.420674x≈−2.431033
Solution
x1≈−2.431033,x2≈1.420674
Show Solution
