Question
Simplify the expression
x5y−9y3x5+147y2x5−441y3x4
Evaluate
x3y(x2−3xy×9y2)−3yx3y(x−3y)(3xy−7x×7)
Multiply
More Steps

Multiply the terms
3xy×9y2
Multiply the terms
27xy×y2
Multiply the terms with the same base by adding their exponents
27xy1+2
Add the numbers
27xy3
x3y(x2−27xy3)−3yx3y(x−3y)(3xy−7x×7)
Multiply the terms
x3y(x2−27xy3)−3yx3y(x−3y)(3xy−49x)
Multiply the terms
x3y(x2−27xy3)−3y2x3(x−3y)(3xy−49x)
Expand the expression
More Steps

Calculate
x3y(x2−27xy3)
Apply the distributive property
x3yx2−x3y×27xy3
Multiply the terms
More Steps

Evaluate
x3×x2
Use the product rule an×am=an+m to simplify the expression
x3+2
Add the numbers
x5
x5y−x3y×27xy3
Multiply the terms
More Steps

Evaluate
x3y×27xy3
Use the commutative property to reorder the terms
27x3yxy3
Multiply the terms
27x4y×y3
Multiply the terms
27x4y4
x5y−27x4y4
x5y−27x4y4−3y2x3(x−3y)(3xy−49x)
Expand the expression
More Steps

Calculate
−3y2x3(x−3y)(3xy−49x)
Simplify
More Steps

Evaluate
−3y2x3(x−3y)
Apply the distributive property
−3y2x3×x−(−3y2x3×3y)
Multiply the terms
−3y2x4−(−3y2x3×3y)
Multiply the terms
−3y2x4−(−9y3x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3y2x4+9y3x3
(−3y2x4+9y3x3)(3xy−49x)
Apply the distributive property
−3y2x4×3xy−(−3y2x4×49x)+9y3x3×3xy−9y3x3×49x
Multiply the terms
More Steps

Evaluate
−3y2x4×3xy
Multiply the numbers
−9y2x4×xy
Multiply the terms
−9y2x5y
Multiply the terms
−9y3x5
−9y3x5−(−3y2x4×49x)+9y3x3×3xy−9y3x3×49x
Multiply the terms
More Steps

Evaluate
−3y2x4×49x
Multiply the numbers
−147y2x4×x
Multiply the terms
−147y2x5
−9y3x5−(−147y2x5)+9y3x3×3xy−9y3x3×49x
Multiply the terms
More Steps

Evaluate
9y3x3×3xy
Multiply the numbers
27y3x3×xy
Multiply the terms
27y3x4y
Multiply the terms
27y4x4
−9y3x5−(−147y2x5)+27y4x4−9y3x3×49x
Multiply the terms
More Steps

Evaluate
9y3x3×49x
Multiply the numbers
441y3x3×x
Multiply the terms
441y3x4
−9y3x5−(−147y2x5)+27y4x4−441y3x4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9y3x5+147y2x5+27y4x4−441y3x4
x5y−27x4y4−9y3x5+147y2x5+27y4x4−441y3x4
Add the terms
More Steps

Evaluate
−27x4y4+27y4x4
Rewrite the expression
−27x4y4+27x4y4
Collect like terms by calculating the sum or difference of their coefficients
(−27+27)x4y4
Add the numbers
0×x4y4
Any expression multiplied by 0 equals 0
0
x5y+0−9y3x5+147y2x5−441y3x4
Solution
x5y−9y3x5+147y2x5−441y3x4
Show Solution

Factor the expression
x4y(x−9y2x+147yx−441y2)
Evaluate
x3y(x2−3xy×9y2)−3yx3y(x−3y)(3xy−7x×7)
Multiply
More Steps

Multiply the terms
3xy×9y2
Multiply the terms
27xy×y2
Multiply the terms with the same base by adding their exponents
27xy1+2
Add the numbers
27xy3
x3y(x2−27xy3)−3yx3y(x−3y)(3xy−7x×7)
Multiply the terms
x3y(x2−27xy3)−3yx3y(x−3y)(3xy−49x)
Multiply the terms
x3y(x2−27xy3)−3y2x3(x−3y)(3xy−49x)
Rewrite the expression
x4y(x−27y3)−x4y×3y(x−3y)(3y−49)
Factor out x4y from the expression
x4y(x−27y3−3y(x−3y)(3y−49))
Solution
x4y(x−9y2x+147yx−441y2)
Show Solution
