Question
Simplify the expression
163×x10−12x10−72x9−603×x9+1104x8−3283×x8−1824x7+7683×x7
Evaluate
x5(x−2)(x−(4−3))(x(4−3))(x−(43))(x(43))
Remove the parentheses
x5(x−2)(x−(4−3))x(4−3)(x−(43))x×43
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x5(x−2)(x−4+3)x(4−3)(x−(43))x×43
Multiply the numbers
x5(x−2)(x−4+3)x(4−3)(x−43)x×43
Multiply the terms with the same base by adding their exponents
x5+1+1(x−2)(x−4+3)(4−3)(x−43)×43
Add the numbers
x7(x−2)(x−4+3)(4−3)(x−43)×43
Multiply the terms
More Steps

Evaluate
x7×43
Use the commutative property to reorder the terms
4x73
Calculate the product
43×x7
43×x7(x−2)(x−4+3)(4−3)(x−43)
Multiply the first two terms
More Steps

Evaluate
43×x7(x−2)(x−4+3)(4−3)
Multiply the terms
More Steps

Evaluate
4(4−3)
Apply the distributive property
4×4−43
Multiply the numbers
16−43
(16−43)3×x7(x−2)(x−4+3)
Multiply the terms
More Steps

Evaluate
(16−43)3
Apply the distributive property
163−43×3
Multiply the numbers
163−12
(163−12)x7(x−2)(x−4+3)
(163−12)x7(x−2)(x−4+3)(x−43)
Multiply the terms
More Steps

Evaluate
(163−12)x7(x−2)
Apply the distributive property
(163−12)x7×x−(163−12)x7×2
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
(163−12)x8−(163−12)x7×2
Multiply the numbers
More Steps

Evaluate
(163−12)×2
Apply the distributive property
163×2−12×2
Multiply the terms
323−12×2
Multiply the numbers
323−24
(163−12)x8+(−323+24)x7
((163−12)x8+(−323+24)x7)(x−4+3)(x−43)
Multiply the terms
More Steps

Evaluate
((163−12)x8+(−323+24)x7)(x−4+3)
Apply the distributive property
(163−12)x8×x−(163−12)x8×4+(163−12)x83+(−323+24)x7×x−(−323+24)x7×4+(−323+24)x73
Multiply the terms
More Steps

Evaluate
x8×x
Use the product rule an×am=an+m to simplify the expression
x8+1
Add the numbers
x9
(163−12)x9−(163−12)x8×4+(163−12)x83+(−323+24)x7×x−(−323+24)x7×4+(−323+24)x73
Multiply the numbers
More Steps

Evaluate
(163−12)×4
Apply the distributive property
163×4−12×4
Multiply the terms
643−12×4
Multiply the numbers
643−48
(163−12)x9+(−643+48)x8+(163−12)x83+(−323+24)x7×x−(−323+24)x7×4+(−323+24)x73
Multiply the numbers
More Steps

Evaluate
(163−12)3
Apply the distributive property
163×3−123
Multiply the numbers
48−123
(163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x7×x−(−323+24)x7×4+(−323+24)x73
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
(163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x8−(−323+24)x7×4+(−323+24)x73
Multiply the numbers
More Steps

Evaluate
(−323+24)×4
Apply the distributive property
−323×4+24×4
Multiply the terms
−1283+24×4
Multiply the numbers
−1283+96
(163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x8−(−1283+96)x7+(−323+24)x73
Multiply the numbers
More Steps

Evaluate
(−323+24)3
Apply the distributive property
−323×3+243
Multiply the numbers
−96+243
(163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x8−(−1283+96)x7+(−96+243)x7
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x8+(1283−96)x7+(−96+243)x7
((163−12)x9+(−643+48)x8+(48−123)x8+(−323+24)x8+(1283−96)x7+(−96+243)x7)(x−43)
Apply the distributive property
(163−12)x9×x−(163−12)x9×43+(−643+48)x8×x−(−643+48)x8×43+(48−123)x8×x−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x9×x
Use the product rule an×am=an+m to simplify the expression
x9+1
Add the numbers
x10
(163−12)x10−(163−12)x9×43+(−643+48)x8×x−(−643+48)x8×43+(48−123)x8×x−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(163−12)×43
Multiply the terms
More Steps

Evaluate
(163−12)×4
Apply the distributive property
163×4−12×4
Multiply the terms
643−12×4
Multiply the numbers
643−48
(643−48)3
Apply the distributive property
643×3−483
Multiply the numbers
More Steps

Evaluate
643×3
When a square root of an expression is multiplied by itself,the result is that expression
64×3
Multiply the terms
192
192−483
(163−12)x10+(−192+483)x9+(−643+48)x8×x−(−643+48)x8×43+(48−123)x8×x−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x8×x
Use the product rule an×am=an+m to simplify the expression
x8+1
Add the numbers
x9
(163−12)x10+(−192+483)x9+(−643+48)x9−(−643+48)x8×43+(48−123)x8×x−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(−643+48)×43
Multiply the terms
More Steps

Evaluate
(−643+48)×4
Apply the distributive property
−643×4+48×4
Multiply the terms
−2563+48×4
Multiply the numbers
−2563+192
(−2563+192)3
Apply the distributive property
−2563×3+1923
Multiply the numbers
More Steps

Evaluate
−2563×3
When a square root of an expression is multiplied by itself,the result is that expression
−256×3
Multiply the terms
−768
−768+1923
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x8×x−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x8×x
Use the product rule an×am=an+m to simplify the expression
x8+1
Add the numbers
x9
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9−(48−123)x8×43+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(48−123)×43
Multiply the terms
More Steps

Evaluate
(48−123)×4
Apply the distributive property
48×4−123×4
Multiply the numbers
192−123×4
Multiply the terms
192−483
(192−483)3
Apply the distributive property
1923−483×3
Multiply the numbers
More Steps

Evaluate
−483×3
When a square root of an expression is multiplied by itself,the result is that expression
−48×3
Multiply the terms
−144
1923−144
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x8×x−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x8×x
Use the product rule an×am=an+m to simplify the expression
x8+1
Add the numbers
x9
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−323+24)x8×43+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(−323+24)×43
Multiply the terms
More Steps

Evaluate
(−323+24)×4
Apply the distributive property
−323×4+24×4
Multiply the terms
−1283+24×4
Multiply the numbers
−1283+96
(−1283+96)3
Apply the distributive property
−1283×3+963
Multiply the numbers
More Steps

Evaluate
−1283×3
When a square root of an expression is multiplied by itself,the result is that expression
−128×3
Multiply the terms
−384
−384+963
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−384+963)x8+(1283−96)x7×x−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−384+963)x8+(1283−96)x8−(1283−96)x7×43+(−96+243)x7×x−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(1283−96)×43
Multiply the terms
More Steps

Evaluate
(1283−96)×4
Apply the distributive property
1283×4−96×4
Multiply the terms
5123−96×4
Multiply the numbers
5123−384
(5123−384)3
Apply the distributive property
5123×3−3843
Multiply the numbers
More Steps

Evaluate
5123×3
When a square root of an expression is multiplied by itself,the result is that expression
512×3
Multiply the terms
1536
1536−3843
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−384+963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x7×x−(−96+243)x7×43
Multiply the terms
More Steps

Evaluate
x7×x
Use the product rule an×am=an+m to simplify the expression
x7+1
Add the numbers
x8
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−384+963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8−(−96+243)x7×43
Multiply the numbers
More Steps

Evaluate
(−96+243)×43
Multiply the terms
More Steps

Evaluate
(−96+243)×4
Apply the distributive property
−96×4+243×4
Multiply the numbers
−384+243×4
Multiply the terms
−384+963
(−384+963)3
Apply the distributive property
−3843+963×3
Multiply the numbers
More Steps

Evaluate
963×3
When a square root of an expression is multiplied by itself,the result is that expression
96×3
Multiply the terms
288
−3843+288
(163−12)x10+(−192+483)x9+(−643+48)x9−(−768+1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9−(−384+963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8−(−3843+288)x7
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(163−12)x10+(−192+483)x9+(−643+48)x9+(768−1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10+(−192+483)x9+(−643+48)x9+(768−1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9+(−643+48)x9+(768−1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+(768−1923)x8+(48−123)x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+(48−123)x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9+(−1923+144)x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8+(−323+24)x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+(384−963)x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+384x8−963×x8+(1283−96)x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+384x8−963×x8+1283×x8−96x8+(−1536+3843)x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+384x8−963×x8+1283×x8−96x8−1536x7+3843×x7+(−96+243)x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+384x8−963×x8+1283×x8−96x8−1536x7+3843×x7−96x8+243×x8+(3843−288)x7
Expand the expression
163×x10−12x10−192x9+483×x9−643×x9+48x9+768x8−1923×x8+48x9−123×x9−1923×x8+144x8−323×x9+24x9+384x8−963×x8+1283×x8−96x8−1536x7+3843×x7−96x8+243×x8+3843×x7−288x7
Add the terms
More Steps

Evaluate
−192x9+48x9+48x9+24x9
Collect like terms by calculating the sum or difference of their coefficients
(−192+48+48+24)x9
Add the numbers
−72x9
163×x10−12x10−72x9+483×x9−643×x9+768x8−1923×x8−123×x9−1923×x8+144x8−323×x9+384x8−963×x8+1283×x8−96x8−1536x7+3843×x7−96x8+243×x8+3843×x7−288x7
Subtract the terms
More Steps

Evaluate
483×x9−643×x9−123×x9−323×x9
Collect like terms by calculating the sum or difference of their coefficients
(48−64−12−32)3×x9
Subtract the numbers
−603×x9
163×x10−12x10−72x9−603×x9+768x8−1923×x8−1923×x8+144x8+384x8−963×x8+1283×x8−96x8−1536x7+3843×x7−96x8+243×x8+3843×x7−288x7
Calculate the sum or difference
More Steps

Evaluate
768x8+144x8+384x8−96x8−96x8
Collect like terms by calculating the sum or difference of their coefficients
(768+144+384−96−96)x8
Calculate the sum or difference
1104x8
163×x10−12x10−72x9−603×x9+1104x8−1923×x8−1923×x8−963×x8+1283×x8−1536x7+3843×x7+243×x8+3843×x7−288x7
Calculate the sum or difference
More Steps

Evaluate
−1923×x8−1923×x8−963×x8+1283×x8+243×x8
Collect like terms by calculating the sum or difference of their coefficients
(−192−192−96+128+24)3×x8
Calculate the sum or difference
−3283×x8
163×x10−12x10−72x9−603×x9+1104x8−3283×x8−1536x7+3843×x7+3843×x7−288x7
Subtract the terms
More Steps

Evaluate
−1536x7−288x7
Collect like terms by calculating the sum or difference of their coefficients
(−1536−288)x7
Subtract the numbers
−1824x7
163×x10−12x10−72x9−603×x9+1104x8−3283×x8−1824x7+3843×x7+3843×x7
Solution
More Steps

Evaluate
3843×x7+3843×x7
Collect like terms by calculating the sum or difference of their coefficients
(384+384)3×x7
Add the numbers
7683×x7
163×x10−12x10−72x9−603×x9+1104x8−3283×x8−1824x7+7683×x7
Show Solution

Find the roots
x1=0,x2=2,x3=4−3,x4=43
Alternative Form
x1=0,x2=2,x3≈2.267949,x4≈6.928203
Evaluate
(x5)(x−2)(x−(4−3))(x(4−3))(x−(43))(x(43))
To find the roots of the expression,set the expression equal to 0
(x5)(x−2)(x−(4−3))(x(4−3))(x−(43))(x(43))=0
Calculate
x5(x−2)(x−(4−3))(x(4−3))(x−(43))(x(43))=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x5(x−2)(x−4+3)(x(4−3))(x−(43))(x(43))=0
Use the commutative property to reorder the terms
x5(x−2)(x−4+3)(4−3)x(x−(43))(x(43))=0
Multiply the numbers
x5(x−2)(x−4+3)(4−3)x(x−43)(x(43))=0
Multiply the numbers
x5(x−2)(x−4+3)(4−3)x(x−43)(x×43)=0
Use the commutative property to reorder the terms
x5(x−2)(x−4+3)(4−3)x(x−43)×43×x=0
Multiply the terms
More Steps

Multiply the terms
x5(x−2)(x−4+3)(4−3)x(x−43)×43×x
Multiply the terms with the same base by adding their exponents
x5+1+1(x−2)(x−4+3)(4−3)(x−43)×43
Add the numbers
x7(x−2)(x−4+3)(4−3)(x−43)×43
Multiply the terms
More Steps

Evaluate
x7×43
Use the commutative property to reorder the terms
4x73
Calculate the product
43×x7
43×x7(x−2)(x−4+3)(4−3)(x−43)
Multiply the first two terms
More Steps

Evaluate
43×x7(x−2)(x−4+3)(4−3)
Multiply the terms
(16−43)3×x7(x−2)(x−4+3)
Multiply the terms
(163−12)x7(x−2)(x−4+3)
(163−12)x7(x−2)(x−4+3)(x−43)
(163−12)x7(x−2)(x−4+3)(x−43)=0
Elimination the left coefficient
x7(x−2)(x−4+3)(x−43)=0
Separate the equation into 4 possible cases
x7=0x−2=0x−4+3=0x−43=0
The only way a power can be 0 is when the base equals 0
x=0x−2=0x−4+3=0x−43=0
Solve the equation
More Steps

Evaluate
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=0x=2x−4+3=0x−43=0
Solve the equation
More Steps

Evaluate
x−4+3=0
Move the constant to the right-hand side and change its sign
x=0−(−4+3)
Subtract the terms
More Steps

Evaluate
0−(−4+3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0+4−3
Removing 0 doesn't change the value,so remove it from the expression
4−3
x=4−3
x=0x=2x=4−3x−43=0
Solve the equation
More Steps

Evaluate
x−43=0
Move the constant to the right-hand side and change its sign
x=0+43
Add the terms
x=43
x=0x=2x=4−3x=43
Solution
x1=0,x2=2,x3=4−3,x4=43
Alternative Form
x1=0,x2=2,x3≈2.267949,x4≈6.928203
Show Solution
