Question
Simplify the expression
4x7−8x6
Evaluate
x5×2(x×1)(2x−4)
Remove the parentheses
x5×2x×1×(2x−4)
Rewrite the expression
x5×2x(2x−4)
Multiply the terms with the same base by adding their exponents
x5+1×2(2x−4)
Add the numbers
x6×2(2x−4)
Use the commutative property to reorder the terms
2x6(2x−4)
Apply the distributive property
2x6×2x−2x6×4
Multiply the terms
More Steps

Evaluate
2x6×2x
Multiply the numbers
4x6×x
Multiply the terms
More Steps

Evaluate
x6×x
Use the product rule an×am=an+m to simplify the expression
x6+1
Add the numbers
x7
4x7
4x7−2x6×4
Solution
4x7−8x6
Show Solution

Factor the expression
4x6(x−2)
Evaluate
x5×2(x×1)(2x−4)
Remove the parentheses
x5×2x×1×(2x−4)
Any expression multiplied by 1 remains the same
x5×2x(2x−4)
Multiply the terms with the same base by adding their exponents
x5+1×2(2x−4)
Add the numbers
x6×2(2x−4)
Use the commutative property to reorder the terms
2x6(2x−4)
Factor the expression
2x6×2(x−2)
Solution
4x6(x−2)
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(x5)×2(x×1)(2x−4)
To find the roots of the expression,set the expression equal to 0
(x5)×2(x×1)(2x−4)=0
Calculate
x5×2(x×1)(2x−4)=0
Any expression multiplied by 1 remains the same
x5×2x(2x−4)=0
Multiply
More Steps

Multiply the terms
x5×2x(2x−4)
Multiply the terms with the same base by adding their exponents
x5+1×2(2x−4)
Add the numbers
x6×2(2x−4)
Use the commutative property to reorder the terms
2x6(2x−4)
2x6(2x−4)=0
Elimination the left coefficient
x6(2x−4)=0
Separate the equation into 2 possible cases
x6=02x−4=0
The only way a power can be 0 is when the base equals 0
x=02x−4=0
Solve the equation
More Steps

Evaluate
2x−4=0
Move the constant to the right-hand side and change its sign
2x=0+4
Removing 0 doesn't change the value,so remove it from the expression
2x=4
Divide both sides
22x=24
Divide the numbers
x=24
Divide the numbers
More Steps

Evaluate
24
Reduce the numbers
12
Calculate
2
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
