Question
Simplify the expression
−160x
Evaluate
(x(−4))(2(−2))(1×(−10))
Remove the parentheses
x(−4)×2(−2)×1×(−10)
Rewrite the expression
x(−4)×2(−2)(−10)
Rewrite the expression
−x×4×2×2×10
Multiply the terms
More Steps

Evaluate
4×2×2×10
Multiply the terms
8×2×10
Multiply the terms
16×10
Multiply the numbers
160
−x×160
Solution
−160x
Show Solution

Find the roots
x=0
Evaluate
(x(−4))(2(−2))(1×(−10))
To find the roots of the expression,set the expression equal to 0
(x(−4))(2(−2))(1×(−10))=0
Use the commutative property to reorder the terms
(−4x)(2(−2))(1×(−10))=0
Remove the parentheses
−4x(2(−2))(1×(−10))=0
Multiply the numbers
More Steps

Evaluate
2(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−2×2
Multiply the numbers
−4
−4x(−4)(1×(−10))=0
Any expression multiplied by 1 remains the same
−4x(−4)(−10)=0
Multiply
More Steps

Multiply the terms
−4x(−4)(−10)
Rewrite the expression
−4x×4×10
Multiply the terms
More Steps

Evaluate
4×4×10
Multiply the terms
16×10
Multiply the numbers
160
−160x
−160x=0
Change the signs on both sides of the equation
160x=0
Solution
x=0
Show Solution
