Question
Solve the equation
x=23
Alternative Form
x=1.5
Evaluate
(x−41)−(1−(2×6x))=x×21
Simplify
More Steps

Evaluate
(x−41)−(1−(2×6x))
Remove the parentheses
x−41−(1−(2×6x))
Multiply the terms
More Steps

Multiply the terms
2×6x
Cancel out the common factor 2
1×3x
Multiply the terms
3x
x−41−(1−3x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x−41−1+3x
Subtract the numbers
More Steps

Evaluate
−41−1
Reduce fractions to a common denominator
−41−44
Write all numerators above the common denominator
4−1−4
Subtract the numbers
4−5
Use b−a=−ba=−ba to rewrite the fraction
−45
x−45+3x
x−45+3x=x×21
Use the commutative property to reorder the terms
x−45+3x=21x
Multiply both sides of the equation by LCD
(x−45+3x)×12=21x×12
Simplify the equation
More Steps

Evaluate
(x−45+3x)×12
Apply the distributive property
x×12−45×12+3x×12
Simplify
x×12−5×3+x×4
Use the commutative property to reorder the terms
12x−5×3+x×4
Multiply the numbers
12x−15+x×4
Use the commutative property to reorder the terms
12x−15+4x
Add the terms
More Steps

Evaluate
12x+4x
Collect like terms by calculating the sum or difference of their coefficients
(12+4)x
Add the numbers
16x
16x−15
16x−15=21x×12
Simplify the equation
More Steps

Evaluate
21x×12
Simplify
x×6
Use the commutative property to reorder the terms
6x
16x−15=6x
Move the variable to the left side
16x−15−6x=0
Subtract the terms
More Steps

Evaluate
16x−6x
Collect like terms by calculating the sum or difference of their coefficients
(16−6)x
Subtract the numbers
10x
10x−15=0
Move the constant to the right side
10x=0+15
Removing 0 doesn't change the value,so remove it from the expression
10x=15
Divide both sides
1010x=1015
Divide the numbers
x=1015
Solution
x=23
Alternative Form
x=1.5
Show Solution

Rewrite the equation
2x=3
Evaluate
(x−41)−(1−(2×6x))=x×21
Evaluate
More Steps

Evaluate
(x−41)−(1−(2×6x))
Remove the parentheses
x−41−(1−(2×6x))
Multiply the terms
More Steps

Multiply the terms
2×6x
Cancel out the common factor 2
1×3x
Multiply the terms
3x
x−41−(1−3x)
Subtract the terms
More Steps

Simplify
1−3x
Reduce fractions to a common denominator
33−3x
Write all numerators above the common denominator
33−x
x−41−33−x
x−41−33−x=x×21
Use the commutative property to reorder the terms
x−41−33−x=21x
Rewrite the expression
More Steps

Evaluate
−33−x
Use b−a=−ba=−ba to rewrite the fraction
3−3+x
Reduce the fraction
−1+31x
x−41−1+31x=21x
Multiply both sides of the equation by LCD
16x−15=6x
Move the variable to the left side
10x−15=0
Move the constant to the right side
10x=15
Solution
2x=3
Show Solution
