Question
Simplify the expression
4xy−10x−4y+8−2y2
Evaluate
(x−1)×2(y−2)×2−(x×1)×2−y2×2
Remove the parentheses
(x−1)×2(y−2)×2−x×1×2−y2×2
Multiply the terms
More Steps

Multiply the terms
(x−1)×2(y−2)×2
Multiply the terms
(x−1)×4(y−2)
Multiply the first two terms
4(x−1)(y−2)
4(x−1)(y−2)−x×1×2−y2×2
Multiply the terms
More Steps

Multiply the terms
−x×1×2
Rewrite the expression
−x×2
Use the commutative property to reorder the terms
−2x
4(x−1)(y−2)−2x−y2×2
Use the commutative property to reorder the terms
4(x−1)(y−2)−2x−2y2
Expand the expression
More Steps

Calculate
4(x−1)(y−2)
Simplify
More Steps

Evaluate
4(x−1)
Apply the distributive property
4x−4×1
Any expression multiplied by 1 remains the same
4x−4
(4x−4)(y−2)
Apply the distributive property
4xy−4x×2−4y−(−4×2)
Multiply the numbers
4xy−8x−4y−(−4×2)
Multiply the numbers
4xy−8x−4y−(−8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4xy−8x−4y+8
4xy−8x−4y+8−2x−2y2
Solution
More Steps

Evaluate
−8x−2x
Collect like terms by calculating the sum or difference of their coefficients
(−8−2)x
Subtract the numbers
−10x
4xy−10x−4y+8−2y2
Show Solution

Factor the expression
−2(−2xy+5x+2y−4+y2)
Evaluate
(x−1)×2(y−2)×2−(x×1)×2−y2×2
Remove the parentheses
(x−1)×2(y−2)×2−x×1×2−y2×2
Multiply the terms
More Steps

Multiply the terms
(x−1)×2(y−2)×2
Multiply the terms
(x−1)×4(y−2)
Multiply the first two terms
4(x−1)(y−2)
4(x−1)(y−2)−x×1×2−y2×2
Any expression multiplied by 1 remains the same
4(x−1)(y−2)−x×2−y2×2
Use the commutative property to reorder the terms
4(x−1)(y−2)−2x−y2×2
Use the commutative property to reorder the terms
4(x−1)(y−2)−2x−2y2
Simplify
More Steps

Evaluate
4(x−1)(y−2)
Simplify
More Steps

Evaluate
4(x−1)
Apply the distributive property
4x+4(−1)
Multiply the terms
4x−4
(4x−4)(y−2)
Apply the distributive property
4xy+4x(−2)−4y−4(−2)
Multiply the terms
More Steps

Evaluate
4(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−4×2
Multiply the numbers
−8
4xy−8x−4y−4(−2)
Multiply the terms
More Steps

Evaluate
−4(−2)
Multiplying or dividing an even number of negative terms equals a positive
4×2
Multiply the numbers
8
4xy−8x−4y+8
4xy−8x−4y+8−2x−2y2
Subtract the terms
More Steps

Evaluate
−8x−2x
Collect like terms by calculating the sum or difference of their coefficients
(−8−2)x
Subtract the numbers
−10x
4xy−10x−4y+8−2y2
Solution
−2(−2xy+5x+2y−4+y2)
Show Solution
