Question
Simplify the expression
x2−2xa−x+a+a2
Evaluate
(x−1−a)(x−1×a)
Any expression multiplied by 1 remains the same
(x−1−a)(x−a)
Apply the distributive property
x×x−xa−x−(−a)−ax−(−a×a)
Multiply the terms
x2−xa−x−(−a)−ax−(−a×a)
Multiply the terms
x2−xa−x−(−a)−ax−(−a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−xa−x+a−ax+a2
Solution
More Steps

Evaluate
−xa−ax
Rewrite the expression
−xa−xa
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)xa
Subtract the numbers
−2xa
x2−2xa−x+a+a2
Show Solution
