Question
Simplify the expression
27x3−162x2+324x−306
Evaluate
(x−2)2×27(x−2)−90
Multiply
More Steps

Multiply the terms
(x−2)2×27(x−2)
Multiply the terms with the same base by adding their exponents
(x−2)2+1×27
Add the numbers
(x−2)3×27
Use the commutative property to reorder the terms
27(x−2)3
27(x−2)3−90
Expand the expression
More Steps

Calculate
27(x−2)3
Simplify
27(x3−6x2+12x−8)
Apply the distributive property
27x3−27×6x2+27×12x−27×8
Multiply the numbers
27x3−162x2+27×12x−27×8
Multiply the numbers
27x3−162x2+324x−27×8
Multiply the numbers
27x3−162x2+324x−216
27x3−162x2+324x−216−90
Solution
27x3−162x2+324x−306
Show Solution

Factor the expression
9(3x3−18x2+36x−34)
Evaluate
(x−2)2×27(x−2)−90
Multiply
More Steps

Evaluate
(x−2)2×27(x−2)
Multiply the terms with the same base by adding their exponents
(x−2)2+1×27
Add the numbers
(x−2)3×27
Use the commutative property to reorder the terms
27(x−2)3
27(x−2)3−90
Simplify
More Steps

Evaluate
27(x−2)3
Simplify
More Steps

Evaluate
(x−2)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
x3−3x2×2+3x×22−23
Calculate
x3−6x2+12x−8
27(x3−6x2+12x−8)
Apply the distributive property
27x3+27(−6x2)+27×12x+27(−8)
Multiply the terms
More Steps

Evaluate
27(−6)
Multiplying or dividing an odd number of negative terms equals a negative
−27×6
Multiply the numbers
−162
27x3−162x2+27×12x+27(−8)
Multiply the terms
27x3−162x2+324x+27(−8)
Multiply the terms
More Steps

Evaluate
27(−8)
Multiplying or dividing an odd number of negative terms equals a negative
−27×8
Multiply the numbers
−216
27x3−162x2+324x−216
27x3−162x2+324x−216−90
Subtract the numbers
27x3−162x2+324x−306
Solution
9(3x3−18x2+36x−34)
Show Solution

Find the roots
x=3390+6
Alternative Form
x≈3.493802
Evaluate
(x−2)2×27(x−2)−90
To find the roots of the expression,set the expression equal to 0
(x−2)2×27(x−2)−90=0
Multiply
More Steps

Multiply the terms
(x−2)2×27(x−2)
Multiply the terms with the same base by adding their exponents
(x−2)2+1×27
Add the numbers
(x−2)3×27
Use the commutative property to reorder the terms
27(x−2)3
27(x−2)3−90=0
Add or subtract both sides
27(x−2)3=0+90
Removing 0 doesn't change the value,so remove it from the expression
27(x−2)3=90
Divide both sides
2727(x−2)3=2790
Divide the numbers
(x−2)3=2790
Cancel out the common factor 9
(x−2)3=310
Take the 3-th root on both sides of the equation
3(x−2)3=3310
Calculate
x−2=3310
Simplify the root
More Steps

Evaluate
3310
To take a root of a fraction,take the root of the numerator and denominator separately
33310
Multiply by the Conjugate
33×332310×332
Simplify
33×332310×39
Multiply the numbers
More Steps

Evaluate
310×39
The product of roots with the same index is equal to the root of the product
310×9
Calculate the product
390
33×332390
Multiply the numbers
More Steps

Evaluate
33×332
The product of roots with the same index is equal to the root of the product
33×32
Calculate the product
333
Reduce the index of the radical and exponent with 3
3
3390
x−2=3390
Move the constant to the right-hand side and change its sign
x=3390+2
Solution
More Steps

Evaluate
3390+2
Reduce fractions to a common denominator
3390+32×3
Write all numerators above the common denominator
3390+2×3
Multiply the numbers
3390+6
x=3390+6
Alternative Form
x≈3.493802
Show Solution
