Question
Simplify the expression
4x4−56x3+276x2−560x+400
Evaluate
(x−2)2(2x−10)2
Expand the expression
More Steps

Evaluate
(x−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×2+22
Calculate
x2−4x+4
(x2−4x+4)(2x−10)2
Expand the expression
More Steps

Evaluate
(2x−10)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(2x)2−2×2x×10+102
Calculate
4x2−40x+100
(x2−4x+4)(4x2−40x+100)
Apply the distributive property
x2×4x2−x2×40x+x2×100−4x×4x2−(−4x×40x)−4x×100+4×4x2−4×40x+4×100
Multiply the terms
More Steps

Evaluate
x2×4x2
Use the commutative property to reorder the terms
4x2×x2
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
4x4
4x4−x2×40x+x2×100−4x×4x2−(−4x×40x)−4x×100+4×4x2−4×40x+4×100
Multiply the terms
More Steps

Evaluate
x2×40x
Use the commutative property to reorder the terms
40x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
40x3
4x4−40x3+x2×100−4x×4x2−(−4x×40x)−4x×100+4×4x2−4×40x+4×100
Use the commutative property to reorder the terms
4x4−40x3+100x2−4x×4x2−(−4x×40x)−4x×100+4×4x2−4×40x+4×100
Multiply the terms
More Steps

Evaluate
−4x×4x2
Multiply the numbers
−16x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
−16x3
4x4−40x3+100x2−16x3−(−4x×40x)−4x×100+4×4x2−4×40x+4×100
Multiply the terms
More Steps

Evaluate
−4x×40x
Multiply the numbers
−160x×x
Multiply the terms
−160x2
4x4−40x3+100x2−16x3−(−160x2)−4x×100+4×4x2−4×40x+4×100
Multiply the numbers
4x4−40x3+100x2−16x3−(−160x2)−400x+4×4x2−4×40x+4×100
Multiply the numbers
4x4−40x3+100x2−16x3−(−160x2)−400x+16x2−4×40x+4×100
Multiply the numbers
4x4−40x3+100x2−16x3−(−160x2)−400x+16x2−160x+4×100
Multiply the numbers
4x4−40x3+100x2−16x3−(−160x2)−400x+16x2−160x+400
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4x4−40x3+100x2−16x3+160x2−400x+16x2−160x+400
Subtract the terms
More Steps

Evaluate
−40x3−16x3
Collect like terms by calculating the sum or difference of their coefficients
(−40−16)x3
Subtract the numbers
−56x3
4x4−56x3+100x2+160x2−400x+16x2−160x+400
Add the terms
More Steps

Evaluate
100x2+160x2+16x2
Collect like terms by calculating the sum or difference of their coefficients
(100+160+16)x2
Add the numbers
276x2
4x4−56x3+276x2−400x−160x+400
Solution
More Steps

Evaluate
−400x−160x
Collect like terms by calculating the sum or difference of their coefficients
(−400−160)x
Subtract the numbers
−560x
4x4−56x3+276x2−560x+400
Show Solution

Factor the expression
4(x−2)2(x−5)2
Evaluate
(x−2)2(2x−10)2
Factor the expression
More Steps

Evaluate
(2x−10)2
Factor the expression
(2(x−5))2
Evaluate the power
4(x−5)2
(x−2)2×4(x−5)2
Solution
4(x−2)2(x−5)2
Show Solution

Find the roots
x1=2,x2=5
Evaluate
(x−2)2(2x−10)2
To find the roots of the expression,set the expression equal to 0
(x−2)2(2x−10)2=0
Separate the equation into 2 possible cases
(x−2)2=0(2x−10)2=0
Solve the equation
More Steps

Evaluate
(x−2)2=0
The only way a power can be 0 is when the base equals 0
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=2(2x−10)2=0
Solve the equation
More Steps

Evaluate
(2x−10)2=0
The only way a power can be 0 is when the base equals 0
2x−10=0
Move the constant to the right-hand side and change its sign
2x=0+10
Removing 0 doesn't change the value,so remove it from the expression
2x=10
Divide both sides
22x=210
Divide the numbers
x=210
Divide the numbers
More Steps

Evaluate
210
Reduce the numbers
15
Calculate
5
x=5
x=2x=5
Solution
x1=2,x2=5
Show Solution
