Question
(x−2)(6y×1)−(2x−3)(3y×1)
Simplify the expression
−3y
Evaluate
(x−2)(6y×1)−(2x−3)(3y×1)
Remove the parentheses
(x−2)×6y×1−(2x−3)×3y×1
Multiply the terms
More Steps

Multiply the terms
(x−2)×6y×1
Any expression multiplied by 1 remains the same
(x−2)×6y
Multiply the first two terms
6(x−2)y
6(x−2)y−(2x−3)×3y×1
Multiply the terms
More Steps

Multiply the terms
(2x−3)×3y×1
Any expression multiplied by 1 remains the same
(2x−3)×3y
Multiply the first two terms
3(2x−3)y
6(x−2)y−3(2x−3)y
Expand the expression
More Steps

Calculate
6(x−2)y
Simplify
More Steps

Evaluate
6(x−2)
Apply the distributive property
6x−6×2
Multiply the numbers
6x−12
(6x−12)y
Apply the distributive property
6xy−12y
6xy−12y−3(2x−3)y
Expand the expression
More Steps

Calculate
−3(2x−3)y
Simplify
More Steps

Evaluate
−3(2x−3)
Apply the distributive property
−3×2x−(−3×3)
Multiply the numbers
−6x−(−3×3)
Multiply the numbers
−6x−(−9)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x+9
(−6x+9)y
Apply the distributive property
−6xy+9y
6xy−12y−6xy+9y
The sum of two opposites equals 0
More Steps

Evaluate
6xy−6xy
Collect like terms
(6−6)xy
Add the coefficients
0×xy
Calculate
0
0−12y+9y
Remove 0
−12y+9y
Collect like terms by calculating the sum or difference of their coefficients
(−12+9)y
Solution
−3y
Show Solution
