Question
Simplify the expression
9x3−36x2+36x
Evaluate
(x−2)(x−2)(x×9)
Remove the parentheses
(x−2)(x−2)x×9
Use the commutative property to reorder the terms
(x−2)(x−2)×9x
Multiply the first two terms
(x−2)2×9x
Use the commutative property to reorder the terms
9x(x−2)2
Expand the expression
More Steps

Evaluate
(x−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×2+22
Calculate
x2−4x+4
9x(x2−4x+4)
Apply the distributive property
9x×x2−9x×4x+9x×4
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
9x3−9x×4x+9x×4
Multiply the terms
More Steps

Evaluate
9x×4x
Multiply the numbers
36x×x
Multiply the terms
36x2
9x3−36x2+9x×4
Solution
9x3−36x2+36x
Show Solution

Find the roots
x1=0,x2=2
Evaluate
(x−2)(x−2)(x×9)
To find the roots of the expression,set the expression equal to 0
(x−2)(x−2)(x×9)=0
Use the commutative property to reorder the terms
(x−2)(x−2)×9x=0
Multiply the terms
More Steps

Multiply the terms
(x−2)(x−2)×9x
Multiply the first two terms
(x−2)2×9x
Use the commutative property to reorder the terms
9x(x−2)2
9x(x−2)2=0
Elimination the left coefficient
x(x−2)2=0
Separate the equation into 2 possible cases
x=0(x−2)2=0
Solve the equation
More Steps

Evaluate
(x−2)2=0
The only way a power can be 0 is when the base equals 0
x−2=0
Move the constant to the right-hand side and change its sign
x=0+2
Removing 0 doesn't change the value,so remove it from the expression
x=2
x=0x=2
Solution
x1=0,x2=2
Show Solution
