Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=4386−215,x2=4386+215
Alternative Form
x1≈1.659003,x2≈2.340997
Evaluate
(x−2)×43(x−2)×2−10=0
Multiply the terms
More Steps

Evaluate
(x−2)×43(x−2)×2
Multiply the terms
(x−2)×86(x−2)
Multiply the first two terms
86(x−2)(x−2)
Multiply the terms
86(x−2)2
86(x−2)2−10=0
Expand the expression
More Steps

Evaluate
86(x−2)2−10
Expand the expression
More Steps

Evaluate
86(x−2)2
Expand the expression
86(x2−4x+4)
Apply the distributive property
86x2−86×4x+86×4
Multiply the numbers
86x2−344x+86×4
Multiply the numbers
86x2−344x+344
86x2−344x+344−10
Subtract the numbers
86x2−344x+334
86x2−344x+334=0
Substitute a=86,b=−344 and c=334 into the quadratic formula x=2a−b±b2−4ac
x=2×86344±(−344)2−4×86×334
Simplify the expression
x=172344±(−344)2−4×86×334
Simplify the expression
More Steps

Evaluate
(−344)2−4×86×334
Multiply the terms
More Steps

Multiply the terms
4×86×334
Multiply the terms
344×334
Multiply the numbers
114896
(−344)2−114896
Calculate
3442−114896
x=172344±3442−114896
Simplify the radical expression
More Steps

Evaluate
3442−114896
Expand the expression
3440
Write the expression as a product where the root of one of the factors can be evaluated
16×215
Write the number in exponential form with the base of 4
42×215
The root of a product is equal to the product of the roots of each factor
42×215
Reduce the index of the radical and exponent with 2
4215
x=172344±4215
Separate the equation into 2 possible cases
x=172344+4215x=172344−4215
Simplify the expression
More Steps

Evaluate
x=172344+4215
Divide the terms
More Steps

Evaluate
172344+4215
Rewrite the expression
1724(86+215)
Cancel out the common factor 4
4386+215
x=4386+215
x=4386+215x=172344−4215
Simplify the expression
More Steps

Evaluate
x=172344−4215
Divide the terms
More Steps

Evaluate
172344−4215
Rewrite the expression
1724(86−215)
Cancel out the common factor 4
4386−215
x=4386−215
x=4386+215x=4386−215
Solution
x1=4386−215,x2=4386+215
Alternative Form
x1≈1.659003,x2≈2.340997
Show Solution
