Question
Simplify the expression
x2−4xa+3x+4a2−6a
Evaluate
(x−2a)(x−2a+3)
Apply the distributive property
x×x−x×2a+x×3−2ax−(−2a×2a)−2a×3
Multiply the terms
x2−x×2a+x×3−2ax−(−2a×2a)−2a×3
Use the commutative property to reorder the terms
x2−2xa+x×3−2ax−(−2a×2a)−2a×3
Use the commutative property to reorder the terms
x2−2xa+3x−2ax−(−2a×2a)−2a×3
Multiply the terms
More Steps

Evaluate
−2a×2a
Multiply the numbers
−4a×a
Multiply the terms
−4a2
x2−2xa+3x−2ax−(−4a2)−2a×3
Multiply the numbers
x2−2xa+3x−2ax−(−4a2)−6a
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−2xa+3x−2ax+4a2−6a
Solution
More Steps

Evaluate
−2xa−2ax
Rewrite the expression
−2xa−2xa
Collect like terms by calculating the sum or difference of their coefficients
(−2−2)xa
Subtract the numbers
−4xa
x2−4xa+3x+4a2−6a
Show Solution
