Question
Simplify the expression
x2−5xyz−5x+6y2z2+12yz+6
Evaluate
(x−2yz−2)(x−3yz−3)
Apply the distributive property
x×x−x×3yz−x×3−2yzx−(−2yz×3yz)−(−2yz×3)−2x−(−2×3yz)−(−2×3)
Multiply the terms
x2−x×3yz−x×3−2yzx−(−2yz×3yz)−(−2yz×3)−2x−(−2×3yz)−(−2×3)
Use the commutative property to reorder the terms
x2−3xyz−x×3−2yzx−(−2yz×3yz)−(−2yz×3)−2x−(−2×3yz)−(−2×3)
Use the commutative property to reorder the terms
x2−3xyz−3x−2yzx−(−2yz×3yz)−(−2yz×3)−2x−(−2×3yz)−(−2×3)
Multiply the terms
More Steps

Evaluate
−2yz×3yz
Multiply the numbers
−6yzyz
Multiply the terms
−6y2z×z
Multiply the terms
−6y2z2
x2−3xyz−3x−2yzx−(−6y2z2)−(−2yz×3)−2x−(−2×3yz)−(−2×3)
Multiply the numbers
x2−3xyz−3x−2yzx−(−6y2z2)−(−6yz)−2x−(−2×3yz)−(−2×3)
Multiply the numbers
x2−3xyz−3x−2yzx−(−6y2z2)−(−6yz)−2x−(−6yz)−(−2×3)
Multiply the numbers
x2−3xyz−3x−2yzx−(−6y2z2)−(−6yz)−2x−(−6yz)−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−3xyz−3x−2yzx+6y2z2+6yz−2x+6yz+6
Subtract the terms
More Steps

Evaluate
−3xyz−2yzx
Rewrite the expression
−3xyz−2xyz
Collect like terms by calculating the sum or difference of their coefficients
(−3−2)xyz
Subtract the numbers
−5xyz
x2−5xyz−3x+6y2z2+6yz−2x+6yz+6
Subtract the terms
More Steps

Evaluate
−3x−2x
Collect like terms by calculating the sum or difference of their coefficients
(−3−2)x
Subtract the numbers
−5x
x2−5xyz−5x+6y2z2+6yz+6yz+6
Solution
More Steps

Evaluate
6yz+6yz
Collect like terms by calculating the sum or difference of their coefficients
(6+6)yz
Add the numbers
12yz
x2−5xyz−5x+6y2z2+12yz+6
Show Solution
