Question
Solve the equation
x∈/R
Alternative Form
No real solution
Evaluate
4x−3×5x−1=3x−2−1
Multiply the terms
More Steps

Multiply the terms
4x−3×5x−1
Multiply the terms
4×5(x−3)(x−1)
Multiply the terms
20(x−3)(x−1)
20(x−3)(x−1)=3x−2−1
Multiply both sides of the equation by LCD
20(x−3)(x−1)×60=(3x−2−1)×60
Simplify the equation
More Steps

Evaluate
20(x−3)(x−1)×60
Simplify
(x−3)(x−1)×3
Use the commutative property to reorder the terms
3(x−3)(x−1)
Multiply the terms
More Steps

Evaluate
3(x−3)
Apply the distributive property
3x−3×3
Multiply the numbers
3x−9
(3x−9)(x−1)
Apply the distributive property
3x×x−3x×1−9x−(−9×1)
Multiply the terms
3x2−3x×1−9x−(−9×1)
Any expression multiplied by 1 remains the same
3x2−3x−9x−(−9×1)
Any expression multiplied by 1 remains the same
3x2−3x−9x−(−9)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−3x−9x+9
Subtract the terms
More Steps

Evaluate
−3x−9x
Collect like terms by calculating the sum or difference of their coefficients
(−3−9)x
Subtract the numbers
−12x
3x2−12x+9
3x2−12x+9=(3x−2−1)×60
Simplify the equation
More Steps

Evaluate
(3x−2−1)×60
Apply the distributive property
3x−2×60−60
Simplify
(x−2)×20−60
Multiply the terms
More Steps

Evaluate
(x−2)×20
Apply the distributive property
x×20−2×20
Use the commutative property to reorder the terms
20x−2×20
Calculate
20x−40
20x−40−60
Subtract the numbers
20x−100
3x2−12x+9=20x−100
Move the expression to the left side
3x2−12x+9−(20x−100)=0
Calculate the sum or difference
More Steps

Evaluate
3x2−12x+9−(20x−100)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−12x+9−20x+100
Subtract the terms
More Steps

Evaluate
−12x−20x
Collect like terms by calculating the sum or difference of their coefficients
(−12−20)x
Subtract the numbers
−32x
3x2−32x+9+100
Add the numbers
3x2−32x+109
3x2−32x+109=0
Substitute a=3,b=−32 and c=109 into the quadratic formula x=2a−b±b2−4ac
x=2×332±(−32)2−4×3×109
Simplify the expression
x=632±(−32)2−4×3×109
Simplify the expression
More Steps

Evaluate
(−32)2−4×3×109
Multiply the terms
More Steps

Multiply the terms
4×3×109
Multiply the terms
12×109
Multiply the numbers
1308
(−32)2−1308
Rewrite the expression
322−1308
Evaluate the power
1024−1308
Subtract the numbers
−284
x=632±−284
Solution
x∈/R
Alternative Form
No real solution
Show Solution
