Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=3−5,x2=3+5
Alternative Form
x1≈0.763932,x2≈5.236068
Evaluate
(x−3)2×4=20
Use the commutative property to reorder the terms
4(x−3)2=20
Expand the expression
More Steps

Evaluate
4(x−3)2
Expand the expression
More Steps

Evaluate
(x−3)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×3+32
Calculate
x2−6x+9
4(x2−6x+9)
Apply the distributive property
4x2−4×6x+4×9
Multiply the numbers
4x2−24x+4×9
Multiply the numbers
4x2−24x+36
4x2−24x+36=20
Move the expression to the left side
4x2−24x+16=0
Substitute a=4,b=−24 and c=16 into the quadratic formula x=2a−b±b2−4ac
x=2×424±(−24)2−4×4×16
Simplify the expression
x=824±(−24)2−4×4×16
Simplify the expression
More Steps

Evaluate
(−24)2−4×4×16
Multiply the terms
More Steps

Multiply the terms
4×4×16
Multiply the terms
16×16
Multiply the numbers
256
(−24)2−256
Rewrite the expression
242−256
Evaluate the power
576−256
Subtract the numbers
320
x=824±320
Simplify the radical expression
More Steps

Evaluate
320
Write the expression as a product where the root of one of the factors can be evaluated
64×5
Write the number in exponential form with the base of 8
82×5
The root of a product is equal to the product of the roots of each factor
82×5
Reduce the index of the radical and exponent with 2
85
x=824±85
Separate the equation into 2 possible cases
x=824+85x=824−85
Simplify the expression
More Steps

Evaluate
x=824+85
Divide the terms
More Steps

Evaluate
824+85
Rewrite the expression
88(3+5)
Reduce the fraction
3+5
x=3+5
x=3+5x=824−85
Simplify the expression
More Steps

Evaluate
x=824−85
Divide the terms
More Steps

Evaluate
824−85
Rewrite the expression
88(3−5)
Reduce the fraction
3−5
x=3−5
x=3+5x=3−5
Solution
x1=3−5,x2=3+5
Alternative Form
x1≈0.763932,x2≈5.236068
Show Solution
