Question
Solve the equation
Solve for x
Solve for y
x=y45+3y4x=y4−5+3y4
Evaluate
(x−3)2(y4)2=25
Simplify
More Steps

Evaluate
(x−3)2(y4)2
Multiply the exponents
(x−3)2y4×2
Multiply the numbers
(x−3)2y8
Use the commutative property to reorder the terms
y8(x−3)2
y8(x−3)2=25
Divide both sides
y8y8(x−3)2=y825
Divide the numbers
(x−3)2=y825
Take the root of both sides of the equation and remember to use both positive and negative roots
x−3=±y825
Simplify the expression
More Steps

Evaluate
y825
To take a root of a fraction,take the root of the numerator and denominator separately
y825
Simplify the radical expression
More Steps

Evaluate
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
y85
Simplify the radical expression
y45
x−3=±y45
Separate the equation into 2 possible cases
x−3=y45x−3=−y45
Calculate
More Steps

Evaluate
x−3=y45
Move the constant to the right-hand side and change its sign
x=y45+3
Add the terms
More Steps

Evaluate
y45+3
Reduce fractions to a common denominator
y45+y43y4
Write all numerators above the common denominator
y45+3y4
x=y45+3y4
x=y45+3y4x−3=−y45
Solution
More Steps

Evaluate
x−3=−y45
Move the constant to the right-hand side and change its sign
x=−y45+3
Add the terms
More Steps

Evaluate
−y45+3
Reduce fractions to a common denominator
−y45+y43y4
Write all numerators above the common denominator
y4−5+3y4
x=y4−5+3y4
x=y45+3y4x=y4−5+3y4
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
(x−3)2(y4)2=25
Simplify
More Steps

Evaluate
(x−3)2(y4)2
Multiply the exponents
(x−3)2y4×2
Multiply the numbers
(x−3)2y8
Use the commutative property to reorder the terms
y8(x−3)2
y8(x−3)2=25
To test if the graph of y8(x−3)2=25 is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)8(−x−3)2=25
Evaluate
More Steps

Evaluate
(−y)8(−x−3)2
Simplify
y8(−x−3)2
A negative base raised to an even power equals a positive
y8(x+3)2
y8(x+3)2=25
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−4x−12y
Calculate
(x−3)2(y4)2=25
Simplify the expression
y8(x−3)2=25
Take the derivative of both sides
dxd(y8(x−3)2)=dxd(25)
Calculate the derivative
More Steps

Evaluate
dxd(y8(x−3)2)
Use differentiation rules
dxd(y8)×(x−3)2+y8×dxd((x−3)2)
Evaluate the derivative
More Steps

Evaluate
dxd(y8)
Use differentiation rules
dyd(y8)×dxdy
Use dxdxn=nxn−1 to find derivative
8y7dxdy
8y7dxdy×(x−3)2+y8×dxd((x−3)2)
Evaluate the derivative
More Steps

Evaluate
dxd((x−3)2)
Evaluate the derivative
2(x−3)×dxd(x−3)
Evaluate the derivative
2(x−3)×1
Multiply the terms
(2x−6)×1
Any expression multiplied by 1 remains the same
2x−6
8y7dxdy×(x−3)2+2y8x−6y8
8y7dxdy×(x−3)2+2y8x−6y8=dxd(25)
Calculate the derivative
8y7dxdy×(x−3)2+2y8x−6y8=0
Rewrite the expression
8(x−3)2y7dxdy+2y8x−6y8=0
Move the expression to the right-hand side and change its sign
8(x−3)2y7dxdy=0−(2y8x−6y8)
Subtract the terms
More Steps

Evaluate
0−(2y8x−6y8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2y8x+6y8
Removing 0 doesn't change the value,so remove it from the expression
−2y8x+6y8
8(x−3)2y7dxdy=−2y8x+6y8
Divide both sides
8(x−3)2y78(x−3)2y7dxdy=8(x−3)2y7−2y8x+6y8
Divide the numbers
dxdy=8(x−3)2y7−2y8x+6y8
Divide the numbers
More Steps

Evaluate
8(x−3)2y7−2y8x+6y8
Rewrite the expression
8(x−3)2y72(−xy8+3y8)
Cancel out the common factor 2
4(x−3)2y7−xy8+3y8
Rewrite the expression
4(x−3)2y7y7(−xy+3y)
Reduce the fraction
4(x−3)2−xy+3y
dxdy=4(x−3)2−xy+3y
Expand the expression
More Steps

Evaluate
4(x−3)2
Calculate
4(x2−6x+9)
Calculate
4x2−24x+36
dxdy=4x2−24x+36−xy+3y
Solution
More Steps

Evaluate
4x2−24x+36−xy+3y
Factor the expression
4x2−24x+36−y(x−3)
Factor the expression
(x−3)(4x−12)−y(x−3)
Reduce the fraction
4x−12−y
Use b−a=−ba=−ba to rewrite the fraction
−4x−12y
dxdy=−4x−12y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=16x2−96x+1445y
Calculate
(x−3)2(y4)2=25
Simplify the expression
y8(x−3)2=25
Take the derivative of both sides
dxd(y8(x−3)2)=dxd(25)
Calculate the derivative
More Steps

Evaluate
dxd(y8(x−3)2)
Use differentiation rules
dxd(y8)×(x−3)2+y8×dxd((x−3)2)
Evaluate the derivative
More Steps

Evaluate
dxd(y8)
Use differentiation rules
dyd(y8)×dxdy
Use dxdxn=nxn−1 to find derivative
8y7dxdy
8y7dxdy×(x−3)2+y8×dxd((x−3)2)
Evaluate the derivative
More Steps

Evaluate
dxd((x−3)2)
Evaluate the derivative
2(x−3)×dxd(x−3)
Evaluate the derivative
2(x−3)×1
Multiply the terms
(2x−6)×1
Any expression multiplied by 1 remains the same
2x−6
8y7dxdy×(x−3)2+2y8x−6y8
8y7dxdy×(x−3)2+2y8x−6y8=dxd(25)
Calculate the derivative
8y7dxdy×(x−3)2+2y8x−6y8=0
Rewrite the expression
8(x−3)2y7dxdy+2y8x−6y8=0
Move the expression to the right-hand side and change its sign
8(x−3)2y7dxdy=0−(2y8x−6y8)
Subtract the terms
More Steps

Evaluate
0−(2y8x−6y8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2y8x+6y8
Removing 0 doesn't change the value,so remove it from the expression
−2y8x+6y8
8(x−3)2y7dxdy=−2y8x+6y8
Divide both sides
8(x−3)2y78(x−3)2y7dxdy=8(x−3)2y7−2y8x+6y8
Divide the numbers
dxdy=8(x−3)2y7−2y8x+6y8
Divide the numbers
More Steps

Evaluate
8(x−3)2y7−2y8x+6y8
Rewrite the expression
8(x−3)2y72(−xy8+3y8)
Cancel out the common factor 2
4(x−3)2y7−xy8+3y8
Rewrite the expression
4(x−3)2y7y7(−xy+3y)
Reduce the fraction
4(x−3)2−xy+3y
dxdy=4(x−3)2−xy+3y
Expand the expression
More Steps

Evaluate
4(x−3)2
Calculate
4(x2−6x+9)
Calculate
4x2−24x+36
dxdy=4x2−24x+36−xy+3y
Simplify
More Steps

Evaluate
4x2−24x+36−xy+3y
Factor the expression
4x2−24x+36−y(x−3)
Factor the expression
(x−3)(4x−12)−y(x−3)
Reduce the fraction
4x−12−y
Use b−a=−ba=−ba to rewrite the fraction
−4x−12y
dxdy=−4x−12y
Take the derivative of both sides
dxd(dxdy)=dxd(−4x−12y)
Calculate the derivative
dx2d2y=dxd(−4x−12y)
Use differentiation rules
dx2d2y=−(4x−12)2dxd(y)×(4x−12)−y×dxd(4x−12)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−(4x−12)2dxdy×(4x−12)−y×dxd(4x−12)
Calculate the derivative
More Steps

Evaluate
dxd(4x−12)
Use differentiation rules
dxd(4x)+dxd(−12)
Evaluate the derivative
4+dxd(−12)
Use dxd(c)=0 to find derivative
4+0
Evaluate
4
dx2d2y=−(4x−12)2dxdy×(4x−12)−y×4
Calculate
More Steps

Evaluate
dxdy×(4x−12)
Apply the distributive property
dxdy×4x−dxdy×12
Multiply the terms
4xdxdy−dxdy×12
Use the commutative property to reorder the terms
4xdxdy−12dxdy
dx2d2y=−(4x−12)24xdxdy−12dxdy−y×4
Use the commutative property to reorder the terms
dx2d2y=−(4x−12)24xdxdy−12dxdy−4y
Calculate
dx2d2y=−4(x−3)2xdxdy−3dxdy−y
Use equation dxdy=−4x−12y to substitute
dx2d2y=−4(x−3)2x(−4x−12y)−3(−4x−12y)−y
Solution
More Steps

Calculate
−4(x−3)2x(−4x−12y)−3(−4x−12y)−y
Multiply the terms
More Steps

Evaluate
x(−4x−12y)
Multiplying or dividing an odd number of negative terms equals a negative
−x×4x−12y
Multiply the terms
−4x−12xy
−4(x−3)2−4x−12xy−3(−4x−12y)−y
Multiply the terms
More Steps

Evaluate
−3(−4x−12y)
Multiplying or dividing an even number of negative terms equals a positive
3×4x−12y
Multiply the terms
4x−123y
−4(x−3)2−4x−12xy+4x−123y−y
Calculate the sum or difference
More Steps

Evaluate
−4x−12xy+4x−123y−y
Reduce fractions to a common denominator
−4x−12xy+4x−123y−4x−12y(4x−12)
Write all numerators above the common denominator
4x−12−xy+3y−y(4x−12)
Multiply the terms
4x−12−xy+3y−(4yx−12y)
Calculate the sum or difference
4x−12−5xy+15y
Factor the expression
4x−12−5y(x−3)
Factor the expression
4(x−3)−5y(x−3)
Reduce the fraction
4−5y
Calculate
−45y
−4(x−3)2−45y
Divide the terms
More Steps

Evaluate
4(x−3)2−45y
Multiply by the reciprocal
−45y×4(x−3)21
Multiply the terms
−4×4(x−3)25y
Multiply the terms
−16(x−3)25y
−(−16(x−3)25y)
Calculate
16(x−3)25y
Expand the expression
More Steps

Evaluate
16(x−3)2
Expand the expression
16(x2−6x+9)
Apply the distributive property
16x2−16×6x+16×9
Multiply the numbers
16x2−96x+16×9
Multiply the numbers
16x2−96x+144
16x2−96x+1445y
dx2d2y=16x2−96x+1445y
Show Solution
