Question
Simplify the expression
32x10−480x9+2880x8−8640x7+12960x6−7776x5
Evaluate
(x−3)2(2x×1)3(x−3)3(2x×1)2
Multiply the terms
(x−3)2(2x)3(x−3)3(2x×1)2
Multiply the terms
(x−3)2(2x)3(x−3)3(2x)2
Multiply the terms with the same base by adding their exponents
(x−3)2+3(2x)3(2x)2
Add the numbers
(x−3)5(2x)3(2x)2
Multiply the terms with the same base by adding their exponents
(x−3)5(2x)3+2
Add the numbers
(x−3)5(2x)5
Multiply the terms
(2x(x−3))5
Evaluate the power
25x5(x−3)5
Evaluate the power
32x5(x−3)5
Evaluate the power
32x5(x5−15x4+90x3−270x2+405x−243)
Apply the distributive property
32x5×x5−32x5×15x4+32x5×90x3−32x5×270x2+32x5×405x−32x5×243
Multiply the terms
More Steps

Evaluate
x5×x5
Use the product rule an×am=an+m to simplify the expression
x5+5
Add the numbers
x10
32x10−32x5×15x4+32x5×90x3−32x5×270x2+32x5×405x−32x5×243
Multiply the terms
More Steps

Evaluate
32x5×15x4
Multiply the numbers
480x5×x4
Multiply the terms
More Steps

Evaluate
x5×x4
Use the product rule an×am=an+m to simplify the expression
x5+4
Add the numbers
x9
480x9
32x10−480x9+32x5×90x3−32x5×270x2+32x5×405x−32x5×243
Multiply the terms
More Steps

Evaluate
32x5×90x3
Multiply the numbers
2880x5×x3
Multiply the terms
More Steps

Evaluate
x5×x3
Use the product rule an×am=an+m to simplify the expression
x5+3
Add the numbers
x8
2880x8
32x10−480x9+2880x8−32x5×270x2+32x5×405x−32x5×243
Multiply the terms
More Steps

Evaluate
32x5×270x2
Multiply the numbers
8640x5×x2
Multiply the terms
More Steps

Evaluate
x5×x2
Use the product rule an×am=an+m to simplify the expression
x5+2
Add the numbers
x7
8640x7
32x10−480x9+2880x8−8640x7+32x5×405x−32x5×243
Multiply the terms
More Steps

Evaluate
32x5×405x
Multiply the numbers
12960x5×x
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
12960x6
32x10−480x9+2880x8−8640x7+12960x6−32x5×243
Solution
32x10−480x9+2880x8−8640x7+12960x6−7776x5
Show Solution

Find the roots
x1=0,x2=3
Evaluate
(x−3)2(2x×1)3(x−3)3(2x×1)2
To find the roots of the expression,set the expression equal to 0
(x−3)2(2x×1)3(x−3)3(2x×1)2=0
Multiply the terms
(x−3)2(2x)3(x−3)3(2x×1)2=0
Multiply the terms
(x−3)2(2x)3(x−3)3(2x)2=0
Multiply
More Steps

Multiply the terms
(x−3)2(2x)3(x−3)3(2x)2
Multiply the terms with the same base by adding their exponents
(x−3)2+3(2x)3(2x)2
Add the numbers
(x−3)5(2x)3(2x)2
Multiply the terms with the same base by adding their exponents
(x−3)5(2x)3+2
Add the numbers
(x−3)5(2x)5
Multiply the terms
(2x(x−3))5
(2x(x−3))5=0
The only way a power can be 0 is when the base equals 0
2x(x−3)=0
Elimination the left coefficient
x(x−3)=0
Separate the equation into 2 possible cases
x=0x−3=0
Solve the equation
More Steps

Evaluate
x−3=0
Move the constant to the right-hand side and change its sign
x=0+3
Removing 0 doesn't change the value,so remove it from the expression
x=3
x=0x=3
Solution
x1=0,x2=3
Show Solution
