Question
Simplify the expression
−6x2+24x−26
Evaluate
(x−3)3−(x−1)3
Expand the expression
x3−9x2+27x−27−(x−1)3
Expand the expression
x3−9x2+27x−27−x3+3x2−3x+1
The sum of two opposites equals 0
More Steps

Evaluate
x3−x3
Collect like terms
(1−1)x3
Add the coefficients
0×x3
Calculate
0
0−9x2+27x−27+3x2−3x+1
Remove 0
−9x2+27x−27+3x2−3x+1
Add the terms
More Steps

Evaluate
−9x2+3x2
Collect like terms by calculating the sum or difference of their coefficients
(−9+3)x2
Add the numbers
−6x2
−6x2+27x−27−3x+1
Subtract the terms
More Steps

Evaluate
27x−3x
Collect like terms by calculating the sum or difference of their coefficients
(27−3)x
Subtract the numbers
24x
−6x2+24x−27+1
Solution
−6x2+24x−26
Show Solution

Factor the expression
−2(3x2−12x+13)
Evaluate
(x−3)3−(x−1)3
Use a3−b3=(a−b)(a2+ab+b2) to factor the expression
(x−3−x+1)((x−3)2+(x−3)(x−1)+(x−1)2)
Calculate
More Steps

Simplify
x−3−x+1
The sum of two opposites equals 0
More Steps

Evaluate
x−x
Collect like terms
(1−1)x
Add the coefficients
0×x
Calculate
0
0−3+1
Remove 0
−3+1
Add the numbers
−2
−2((x−3)2+(x−3)(x−1)+(x−1)2)
Solution
More Steps

Simplify
(x−3)2+(x−3)(x−1)+(x−1)2
Simplify
More Steps

Simplify
(x−3)(x−1)
Apply the distributive property
x×x+x(−1)−3x−3(−1)
Multiply the terms
x2+x(−1)−3x−3(−1)
Multiplying or dividing an odd number of negative terms equals a negative
x2−x−3x−3(−1)
Multiply the terms
x2−x−3x+3
(x−3)2+x2−x−3x+3+(x−1)2
Simplify
More Steps

Evaluate
−x−3x
Collect like terms by calculating the sum or difference of their coefficients
(−1−3)x
Subtract the numbers
−4x
(x−3)2+x2−4x+3+(x−1)2
Expand the expression
x2−6x+9+x2−4x+3+(x−1)2
Expand the expression
x2−6x+9+x2−4x+3+x2−2x+1
Add the terms
More Steps

Evaluate
x2+x2+x2
Collect like terms by calculating the sum or difference of their coefficients
(1+1+1)x2
Add the numbers
3x2
3x2−6x+9−4x+3−2x+1
Subtract the terms
More Steps

Evaluate
−6x−4x−2x
Collect like terms by calculating the sum or difference of their coefficients
(−6−4−2)x
Subtract the numbers
−12x
3x2−12x+9+3+1
Add the numbers
More Steps

Evaluate
9+3+1
Add the numbers
12+1
Add the numbers
13
3x2−12x+13
−2(3x2−12x+13)
Show Solution

Find the roots
x1=2−33i,x2=2+33i
Alternative Form
x1≈2−0.57735i,x2≈2+0.57735i
Evaluate
(x−3)3−(x−1)3
To find the roots of the expression,set the expression equal to 0
(x−3)3−(x−1)3=0
Use a3−b3=(a−b)(a2+ab+b2) to factor the expression
(x−3−x+1)((x−3)2+(x−3)(x−1)+(x−1)2)=0
Separate the equation into 2 possible cases
x−3−x+1=0(x−3)2+(x−3)(x−1)+(x−1)2=0
Solve the equation
More Steps

Evaluate
x−3−x+1=0
Calculate the sum or difference
More Steps

Evaluate
x−3−x+1
The sum of two opposites equals 0
0−3+1
Remove 0
−3+1
Add the numbers
−2
−2=0
The statement is false for any value of x
x∈∅
x∈∅(x−3)2+(x−3)(x−1)+(x−1)2=0
Solve the equation
More Steps

Evaluate
(x−3)2+(x−3)(x−1)+(x−1)2=0
Calculate
More Steps

Evaluate
(x−3)2+(x−3)(x−1)+(x−1)2
Expand the expression
x2−6x+9+(x−3)(x−1)+(x−1)2
Expand the expression
x2−6x+9+x2−4x+3+(x−1)2
Expand the expression
x2−6x+9+x2−4x+3+x2−2x+1
Add the terms
3x2−6x+9−4x+3−2x+1
Subtract the terms
3x2−12x+9+3+1
Add the numbers
3x2−12x+13
3x2−12x+13=0
Substitute a=3,b=−12 and c=13 into the quadratic formula x=2a−b±b2−4ac
x=2×312±(−12)2−4×3×13
Simplify the expression
x=612±(−12)2−4×3×13
Simplify the expression
More Steps

Evaluate
(−12)2−4×3×13
Multiply the terms
(−12)2−156
Rewrite the expression
122−156
Evaluate the power
144−156
Subtract the numbers
−12
x=612±−12
Simplify the radical expression
More Steps

Evaluate
−12
Evaluate the power
12×−1
Evaluate the power
12×i
Evaluate the power
23×i
x=612±23×i
Separate the equation into 2 possible cases
x=612+23×ix=612−23×i
Simplify the expression
x=2+33ix=612−23×i
Simplify the expression
x=2+33ix=2−33i
x∈∅x=2+33ix=2−33i
Find the union
x=2+33ix=2−33i
Solution
x1=2−33i,x2=2+33i
Alternative Form
x1≈2−0.57735i,x2≈2+0.57735i
Show Solution
