Question
Simplify the expression
203x3y−203x3+609x2y+609x2−1218x2y2+1827xy2−3654xy+1827y3x−5481y3+5481y2
Evaluate
(x−3y)2×203(x−3)(y−1)
Use the commutative property to reorder the terms
203(x−3y)2(x−3)(y−1)
Expand the expression
More Steps

Evaluate
(x−3y)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×3y+(3y)2
Calculate
x2−6xy+9y2
203(x2−6xy+9y2)(x−3)(y−1)
Multiply the terms
More Steps

Evaluate
203(x2−6xy+9y2)
Apply the distributive property
203x2−203×6xy+203×9y2
Multiply the numbers
203x2−1218xy+203×9y2
Multiply the numbers
203x2−1218xy+1827y2
(203x2−1218xy+1827y2)(x−3)(y−1)
Multiply the terms
More Steps

Evaluate
(203x2−1218xy+1827y2)(x−3)
Apply the distributive property
203x2×x−203x2×3−1218xyx−(−1218xy×3)+1827y2x−1827y2×3
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
203x3−203x2×3−1218xyx−(−1218xy×3)+1827y2x−1827y2×3
Multiply the numbers
203x3−609x2−1218xyx−(−1218xy×3)+1827y2x−1827y2×3
Multiply the terms
203x3−609x2−1218x2y−(−1218xy×3)+1827y2x−1827y2×3
Multiply the numbers
203x3−609x2−1218x2y−(−3654xy)+1827y2x−1827y2×3
Multiply the numbers
203x3−609x2−1218x2y−(−3654xy)+1827y2x−5481y2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
203x3−609x2−1218x2y+3654xy+1827y2x−5481y2
(203x3−609x2−1218x2y+3654xy+1827y2x−5481y2)(y−1)
Apply the distributive property
203x3y−203x3×1−609x2y−(−609x2×1)−1218x2y×y−(−1218x2y×1)+3654xy×y−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2×1)−1218x2y×y−(−1218x2y×1)+3654xy×y−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2)−1218x2y×y−(−1218x2y×1)+3654xy×y−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Multiply the terms
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y×1)+3654xy×y−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy×y−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Multiply the terms
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy×1+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy+1827y2xy−1827y2x×1−5481y2×y−(−5481y2×1)
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy+1827y3x−1827y2x×1−5481y2×y−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy+1827y3x−1827y2x−5481y2×y−(−5481y2×1)
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy+1827y3x−1827y2x−5481y3−(−5481y2×1)
Any expression multiplied by 1 remains the same
203x3y−203x3−609x2y−(−609x2)−1218x2y2−(−1218x2y)+3654xy2−3654xy+1827y3x−1827y2x−5481y3−(−5481y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
203x3y−203x3−609x2y+609x2−1218x2y2+1218x2y+3654xy2−3654xy+1827y3x−1827y2x−5481y3+5481y2
Add the terms
More Steps

Evaluate
−609x2y+1218x2y
Collect like terms by calculating the sum or difference of their coefficients
(−609+1218)x2y
Add the numbers
609x2y
203x3y−203x3+609x2y+609x2−1218x2y2+3654xy2−3654xy+1827y3x−1827y2x−5481y3+5481y2
Solution
More Steps

Evaluate
3654xy2−1827y2x
Rewrite the expression
3654xy2−1827xy2
Collect like terms by calculating the sum or difference of their coefficients
(3654−1827)xy2
Subtract the numbers
1827xy2
203x3y−203x3+609x2y+609x2−1218x2y2+1827xy2−3654xy+1827y3x−5481y3+5481y2
Show Solution
