Question
Simplify the expression
x3+(−5−2i)x2+(3+9i)x+4−4i
Evaluate
(x−4)(x−1−i)(x−1×i)
Any expression multiplied by 1 remains the same
(x−4)(x−1−i)(x−i)
Multiply the terms
More Steps

Evaluate
(x−4)(x−1−i)
Apply the distributive property
x×x−x(1+i)−4x−(−4(1+i))
Multiply the terms
x2−x(1+i)−4x−(−4(1+i))
Use the commutative property to reorder the terms
x2+(−1−i)x−4x−(−4(1+i))
Apply the distributive property
x2+(−1−i)x−4x−(−4−4i)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2+(−1−i)x−4x+4+4i
Subtract the terms
More Steps

Evaluate
(−1−i)x−4x
Collect like terms by calculating the sum or difference of their coefficients
(−1−i−4)x
Calculate
(−5−i)x
x2+(−5−i)x+4+4i
(x2+(−5−i)x+4+4i)(x−i)
Apply the distributive property
x2×x−x2i+(−5−i)x×x−(−5−i)xi+(4+4i)x−(4+4i)i
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x3−x2i+(−5−i)x×x−(−5−i)xi+(4+4i)x−(4+4i)i
Use the commutative property to reorder the terms
x3−ix2+(−5−i)x×x−(−5−i)xi+(4+4i)x−(4+4i)i
Multiply the terms
x3−ix2+(−5−i)x2−(−5−i)xi+(4+4i)x−(4+4i)i
Multiply the numbers
More Steps

Evaluate
(−5−i)i
Apply the distributive property
−5i−i×i
Multiply the numbers
More Steps

Evaluate
−i×i
Multiply
−i2
Use i2=−1 to transform the expression
−(−1)
Calculate
1
−5i+1
Reorder the terms
1−5i
x3−ix2+(−5−i)x2+(−1+5i)x+(4+4i)x−(4+4i)i
Multiply the numbers
More Steps

Evaluate
(4+4i)i
Apply the distributive property
4i+4i×i
Multiply the numbers
More Steps

Evaluate
4i×i
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
4i−4
Reorder the terms
−4+4i
x3−ix2+(−5−i)x2+(−1+5i)x+(4+4i)x−(−4+4i)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x3−ix2+(−5−i)x2+(−1+5i)x+(4+4i)x+4−4i
Subtract the terms
More Steps

Evaluate
−ix2+(−5−i)x2
Collect like terms by calculating the sum or difference of their coefficients
(−i−5−i)x2
Subtract the numbers
More Steps

Evaluate
−i−5−i
Add the numbers
−5+(−1−1)i
Calculate
−5−2i
(−5−2i)x2
x3+(−5−2i)x2+(−1+5i)x+(4+4i)x+4−4i
Solution
More Steps

Evaluate
(−1+5i)x+(4+4i)x
Collect like terms by calculating the sum or difference of their coefficients
(−1+5i+4+4i)x
Add the numbers
More Steps

Evaluate
−1+5i+4+4i
Add the numbers
3+(5+4)i
Calculate
3+9i
(3+9i)x
x3+(−5−2i)x2+(3+9i)x+4−4i
Show Solution
