Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=25−69,x2=25+69
Alternative Form
x1≈−1.653312,x2≈6.653312
Evaluate
(x−5)x×17=187
Multiply the terms
More Steps

Evaluate
(x−5)x×17
Use the commutative property to reorder the terms
(x−5)×17x
Multiply the terms
17x(x−5)
17x(x−5)=187
Expand the expression
More Steps

Evaluate
17x(x−5)
Apply the distributive property
17x×x−17x×5
Multiply the terms
17x2−17x×5
Multiply the numbers
17x2−85x
17x2−85x=187
Move the expression to the left side
17x2−85x−187=0
Substitute a=17,b=−85 and c=−187 into the quadratic formula x=2a−b±b2−4ac
x=2×1785±(−85)2−4×17(−187)
Simplify the expression
x=3485±(−85)2−4×17(−187)
Simplify the expression
More Steps

Evaluate
(−85)2−4×17(−187)
Multiply
More Steps

Multiply the terms
4×17(−187)
Rewrite the expression
−4×17×187
Multiply the terms
−12716
(−85)2−(−12716)
Rewrite the expression
852−(−12716)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
852+12716
Evaluate the power
7225+12716
Add the numbers
19941
x=3485±19941
Simplify the radical expression
More Steps

Evaluate
19941
Write the expression as a product where the root of one of the factors can be evaluated
289×69
Write the number in exponential form with the base of 17
172×69
The root of a product is equal to the product of the roots of each factor
172×69
Reduce the index of the radical and exponent with 2
1769
x=3485±1769
Separate the equation into 2 possible cases
x=3485+1769x=3485−1769
Simplify the expression
More Steps

Evaluate
x=3485+1769
Divide the terms
More Steps

Evaluate
3485+1769
Rewrite the expression
3417(5+69)
Cancel out the common factor 17
25+69
x=25+69
x=25+69x=3485−1769
Simplify the expression
More Steps

Evaluate
x=3485−1769
Divide the terms
More Steps

Evaluate
3485−1769
Rewrite the expression
3417(5−69)
Cancel out the common factor 17
25−69
x=25−69
x=25+69x=25−69
Solution
x1=25−69,x2=25+69
Alternative Form
x1≈−1.653312,x2≈6.653312
Show Solution
