Question
Simplify the expression
−3x3+13x2+28x+12
Evaluate
(x−6)(−3x2−5x−2)
Apply the distributive property
x(−3x2)−x×5x−x×2−6(−3x2)−(−6×5x)−(−6×2)
Multiply the terms
More Steps

Evaluate
x(−3x2)
Use the commutative property to reorder the terms
−3x×x2
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
−3x3
−3x3−x×5x−x×2−6(−3x2)−(−6×5x)−(−6×2)
Multiply the terms
More Steps

Evaluate
x×5x
Use the commutative property to reorder the terms
5x×x
Multiply the terms
5x2
−3x3−5x2−x×2−6(−3x2)−(−6×5x)−(−6×2)
Use the commutative property to reorder the terms
−3x3−5x2−2x−6(−3x2)−(−6×5x)−(−6×2)
Multiply the numbers
More Steps

Evaluate
−6(−3)
Multiplying or dividing an even number of negative terms equals a positive
6×3
Multiply the numbers
18
−3x3−5x2−2x+18x2−(−6×5x)−(−6×2)
Multiply the numbers
−3x3−5x2−2x+18x2−(−30x)−(−6×2)
Multiply the numbers
−3x3−5x2−2x+18x2−(−30x)−(−12)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x3−5x2−2x+18x2+30x+12
Add the terms
More Steps

Evaluate
−5x2+18x2
Collect like terms by calculating the sum or difference of their coefficients
(−5+18)x2
Add the numbers
13x2
−3x3+13x2−2x+30x+12
Solution
More Steps

Evaluate
−2x+30x
Collect like terms by calculating the sum or difference of their coefficients
(−2+30)x
Add the numbers
28x
−3x3+13x2+28x+12
Show Solution

Factor the expression
−(x−6)(x+1)(3x+2)
Evaluate
(x−6)(−3x2−5x−2)
Factor the expression
More Steps

Evaluate
−3x2−5x−2
Factor out −1 from the expression
−(3x2+5x+2)
Factor the expression
More Steps

Evaluate
3x2+5x+2
Rewrite the expression
3x2+(2+3)x+2
Calculate
3x2+2x+3x+2
Rewrite the expression
x×3x+x×2+3x+2
Factor out x from the expression
x(3x+2)+3x+2
Factor out 3x+2 from the expression
(x+1)(3x+2)
−(x+1)(3x+2)
(x−6)(−1)(x+1)(3x+2)
Solution
−(x−6)(x+1)(3x+2)
Show Solution

Find the roots
x1=−1,x2=−32,x3=6
Alternative Form
x1=−1,x2=−0.6˙,x3=6
Evaluate
(x−6)(−3x2−5x−2)
To find the roots of the expression,set the expression equal to 0
(x−6)(−3x2−5x−2)=0
Separate the equation into 2 possible cases
x−6=0−3x2−5x−2=0
Solve the equation
More Steps

Evaluate
x−6=0
Move the constant to the right-hand side and change its sign
x=0+6
Removing 0 doesn't change the value,so remove it from the expression
x=6
x=6−3x2−5x−2=0
Solve the equation
More Steps

Evaluate
−3x2−5x−2=0
Factor the expression
More Steps

Evaluate
−3x2−5x−2
Factor out −1 from the expression
−(3x2+5x+2)
Factor the expression
−(x+1)(3x+2)
−(x+1)(3x+2)=0
Divide the terms
(x+1)(3x+2)=0
When the product of factors equals 0,at least one factor is 0
x+1=03x+2=0
Solve the equation for x
More Steps

Evaluate
x+1=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=−13x+2=0
Solve the equation for x
More Steps

Evaluate
3x+2=0
Move the constant to the right-hand side and change its sign
3x=0−2
Removing 0 doesn't change the value,so remove it from the expression
3x=−2
Divide both sides
33x=3−2
Divide the numbers
x=3−2
Use b−a=−ba=−ba to rewrite the fraction
x=−32
x=−1x=−32
x=6x=−1x=−32
Solution
x1=−1,x2=−32,x3=6
Alternative Form
x1=−1,x2=−0.6˙,x3=6
Show Solution
