Question
Simplify the expression
4x5−74x4+416x3−640x2
Evaluate
(x−8)×2(2x−5)x2(x−8)
Multiply the terms
(x−8)×2x2(2x−5)(x−8)
Multiply the first two terms
2x2(x−8)(2x−5)(x−8)
Multiply the terms
2x2(x−8)2(2x−5)
Expand the expression
More Steps

Evaluate
(x−8)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×8+82
Calculate
x2−16x+64
2x2(x2−16x+64)(2x−5)
Multiply the terms
More Steps

Evaluate
2x2(x2−16x+64)
Apply the distributive property
2x2×x2−2x2×16x+2x2×64
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
2x4−2x2×16x+2x2×64
Multiply the terms
More Steps

Evaluate
2x2×16x
Multiply the numbers
32x2×x
Multiply the terms
32x3
2x4−32x3+2x2×64
Multiply the numbers
2x4−32x3+128x2
(2x4−32x3+128x2)(2x−5)
Apply the distributive property
2x4×2x−2x4×5−32x3×2x−(−32x3×5)+128x2×2x−128x2×5
Multiply the terms
More Steps

Evaluate
2x4×2x
Multiply the numbers
4x4×x
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
4x5
4x5−2x4×5−32x3×2x−(−32x3×5)+128x2×2x−128x2×5
Multiply the numbers
4x5−10x4−32x3×2x−(−32x3×5)+128x2×2x−128x2×5
Multiply the terms
More Steps

Evaluate
−32x3×2x
Multiply the numbers
−64x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
−64x4
4x5−10x4−64x4−(−32x3×5)+128x2×2x−128x2×5
Multiply the numbers
4x5−10x4−64x4−(−160x3)+128x2×2x−128x2×5
Multiply the terms
More Steps

Evaluate
128x2×2x
Multiply the numbers
256x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
256x3
4x5−10x4−64x4−(−160x3)+256x3−128x2×5
Multiply the numbers
4x5−10x4−64x4−(−160x3)+256x3−640x2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4x5−10x4−64x4+160x3+256x3−640x2
Subtract the terms
More Steps

Evaluate
−10x4−64x4
Collect like terms by calculating the sum or difference of their coefficients
(−10−64)x4
Subtract the numbers
−74x4
4x5−74x4+160x3+256x3−640x2
Solution
More Steps

Evaluate
160x3+256x3
Collect like terms by calculating the sum or difference of their coefficients
(160+256)x3
Add the numbers
416x3
4x5−74x4+416x3−640x2
Show Solution

Find the roots
x1=0,x2=25,x3=8
Alternative Form
x1=0,x2=2.5,x3=8
Evaluate
(x−8)×2(2x−5)(x2)(x−8)
To find the roots of the expression,set the expression equal to 0
(x−8)×2(2x−5)(x2)(x−8)=0
Calculate
(x−8)×2(2x−5)x2(x−8)=0
Multiply the terms
More Steps

Multiply the terms
(x−8)×2(2x−5)x2(x−8)
Multiply the terms
(x−8)×2x2(2x−5)(x−8)
Multiply the first two terms
2x2(x−8)(2x−5)(x−8)
Multiply the terms
2x2(x−8)2(2x−5)
2x2(x−8)2(2x−5)=0
Elimination the left coefficient
x2(x−8)2(2x−5)=0
Separate the equation into 3 possible cases
x2=0(x−8)2=02x−5=0
The only way a power can be 0 is when the base equals 0
x=0(x−8)2=02x−5=0
Solve the equation
More Steps

Evaluate
(x−8)2=0
The only way a power can be 0 is when the base equals 0
x−8=0
Move the constant to the right-hand side and change its sign
x=0+8
Removing 0 doesn't change the value,so remove it from the expression
x=8
x=0x=82x−5=0
Solve the equation
More Steps

Evaluate
2x−5=0
Move the constant to the right-hand side and change its sign
2x=0+5
Removing 0 doesn't change the value,so remove it from the expression
2x=5
Divide both sides
22x=25
Divide the numbers
x=25
x=0x=8x=25
Solution
x1=0,x2=25,x3=8
Alternative Form
x1=0,x2=2.5,x3=8
Show Solution
