Question
Simplify the expression
20x2−320x+1280
Evaluate
(x−8)×4(x−8)×5
Multiply the terms
(x−8)×20(x−8)
Multiply the first two terms
20(x−8)(x−8)
Multiply the terms
20(x−8)2
Expand the expression
More Steps

Evaluate
(x−8)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×8+82
Calculate
x2−16x+64
20(x2−16x+64)
Apply the distributive property
20x2−20×16x+20×64
Multiply the numbers
20x2−320x+20×64
Solution
20x2−320x+1280
Show Solution

Find the roots
x=8
Evaluate
(x−8)×4(x−8)×5
To find the roots of the expression,set the expression equal to 0
(x−8)×4(x−8)×5=0
Multiply the terms
More Steps

Multiply the terms
(x−8)×4(x−8)×5
Multiply the terms
(x−8)×20(x−8)
Multiply the first two terms
20(x−8)(x−8)
Multiply the terms
20(x−8)2
20(x−8)2=0
Rewrite the expression
(x−8)2=0
The only way a power can be 0 is when the base equals 0
x−8=0
Move the constant to the right-hand side and change its sign
x=0+8
Solution
x=8
Show Solution
