Question
Simplify the expression
3×x3−243×x2+1923×x−5123
Evaluate
(x−8)23×(x−8)
Multiply the terms with the same base by adding their exponents
(x−8)2+13
Add the numbers
(x−8)33
Use the commutative property to reorder the terms
3×(x−8)3
Expand the expression
More Steps

Evaluate
(x−8)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
x3−3x2×8+3x×82−83
Calculate
x3−24x2+192x−512
3×(x3−24x2+192x−512)
Apply the distributive property
3×x3−3×24x2+3×192x−3×512
Multiply the numbers
3×x3−243×x2+3×192x−3×512
Multiply the numbers
3×x3−243×x2+1923×x−3×512
Solution
3×x3−243×x2+1923×x−5123
Show Solution

Find the roots
x=8
Evaluate
(x−8)23×(x−8)
To find the roots of the expression,set the expression equal to 0
(x−8)23×(x−8)=0
Multiply
More Steps

Multiply the terms
(x−8)23×(x−8)
Multiply the terms with the same base by adding their exponents
(x−8)2+13
Add the numbers
(x−8)33
Use the commutative property to reorder the terms
3×(x−8)3
3×(x−8)3=0
Rewrite the expression
(x−8)3=0
The only way a power can be 0 is when the base equals 0
x−8=0
Move the constant to the right-hand side and change its sign
x=0+8
Solution
x=8
Show Solution
