Question
Simplify the expression
x13−9x12−x8+18x7−81x6
Evaluate
(x−9)(x6)2−(x−9)2x6
Multiply the exponents
(x−9)x6×2−(x−9)2x6
Multiply the numbers
(x−9)x12−(x−9)2x6
Multiply the terms
x12(x−9)−(x−9)2x6
Use the commutative property to reorder the terms
x12(x−9)−x6(x−9)2
Expand the expression
More Steps

Calculate
x12(x−9)
Apply the distributive property
x12×x−x12×9
Multiply the terms
More Steps

Evaluate
x12×x
Use the product rule an×am=an+m to simplify the expression
x12+1
Add the numbers
x13
x13−x12×9
Use the commutative property to reorder the terms
x13−9x12
x13−9x12−x6(x−9)2
Solution
More Steps

Calculate
−x6(x−9)2
Simplify
−x6(x2−18x+81)
Apply the distributive property
−x6×x2−(−x6×18x)−x6×81
Multiply the terms
More Steps

Evaluate
x6×x2
Use the product rule an×am=an+m to simplify the expression
x6+2
Add the numbers
x8
−x8−(−x6×18x)−x6×81
Multiply the terms
More Steps

Evaluate
−x6×18x
Multiply the numbers
−18x6×x
Multiply the terms
−18x7
−x8−(−18x7)−x6×81
Use the commutative property to reorder the terms
−x8−(−18x7)−81x6
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x8+18x7−81x6
x13−9x12−x8+18x7−81x6
Show Solution

Factor the expression
x6(x−9)(x6−x+9)
Evaluate
(x−9)(x6)2−(x−9)2x6
Evaluate the power
More Steps

Evaluate
(x6)2
Transform the expression
x6×2
Multiply the numbers
x12
(x−9)x12−(x−9)2x6
Multiply the terms
x12(x−9)−(x−9)2x6
Use the commutative property to reorder the terms
x12(x−9)−x6(x−9)2
Rewrite the expression
x6(x−9)x6+x6(x−9)(−x+9)
Solution
x6(x−9)(x6−x+9)
Show Solution
