Question
Simplify the expression
≈−b2a−ba2+2xba+2ba−xb−xa=0,x≈b−a=0,x
Evaluate
x−ax−b−x−bx−a=x−ab2(a−b),x
Calculate
More Steps

Evaluate
x−ax−b−x−bx−a=x−ab2(a−b)
Multiply both sides of the equation by LCD
(x−ax−b−x−bx−a)(x−a)(x−b)(x−ab)=x−ab2(a−b)×(x−a)(x−b)(x−ab)
Simplify the equation
More Steps

Evaluate
(x−ax−b−x−bx−a)(x−a)(x−b)(x−ab)
Apply the distributive property
x−ax−b×(x−a)(x−b)(x−ab)−x−bx−a×(x−a)(x−b)(x−ab)
Simplify
(x−b)(x−b)(x−ab)+(−x+a)(x−a)(x−ab)
Apply the distributive property
x(x−b)(x−ab)−b(x−b)(x−ab)+(−x+a)(x−a)(x−ab)
Apply the distributive property
x(x−b)(x−ab)−b(x−b)(x−ab)−x(x−a)(x−ab)+a(x−a)(x−ab)
Expand the expression
x3−x2ab−x2b+xb2a−b(x−b)(x−ab)−x(x−a)(x−ab)+a(x−a)(x−ab)
Expand the expression
x3−x2ab−x2b+xb2a−bx2+b2xa+b2x−b3a−x(x−a)(x−ab)+a(x−a)(x−ab)
Expand the expression
x3−x2ab−x2b+xb2a−bx2+b2xa+b2x−b3a−x3+x2ab+x2a−xa2b+a(x−a)(x−ab)
Expand the expression
x3−x2ab−x2b+xb2a−bx2+b2xa+b2x−b3a−x3+x2ab+x2a−xa2b+ax2−a2xb−a2x+a3b
The sum of two opposites equals 0
0−x2ab−x2b+xb2a−bx2+b2xa+b2x−b3a+x2ab+x2a−xa2b+ax2−a2xb−a2x+a3b
Remove 0
−x2ab−x2b+xb2a−bx2+b2xa+b2x−b3a+x2ab+x2a−xa2b+ax2−a2xb−a2x+a3b
The sum of two opposites equals 0
0−x2b+xb2a−bx2+b2xa+b2x−b3a+x2a−xa2b+ax2−a2xb−a2x+a3b
Remove 0
−x2b+xb2a−bx2+b2xa+b2x−b3a+x2a−xa2b+ax2−a2xb−a2x+a3b
Subtract the terms
−2x2b+xb2a+b2xa+b2x−b3a+x2a−xa2b+ax2−a2xb−a2x+a3b
Add the terms
−2x2b+2xb2a+b2x−b3a+x2a−xa2b+ax2−a2xb−a2x+a3b
Add the terms
−2x2b+2xb2a+b2x−b3a+2x2a−xa2b−a2xb−a2x+a3b
Subtract the terms
−2x2b+2xb2a+b2x−b3a+2x2a−2xa2b−a2x+a3b
−2x2b+2xb2a+b2x−b3a+2x2a−2xa2b−a2x+a3b=x−ab2(a−b)×(x−a)(x−b)(x−ab)
Simplify the equation
More Steps

Evaluate
x−ab2(a−b)×(x−a)(x−b)(x−ab)
Simplify
2(a−b)(x−a)(x−b)
Multiply the terms
(2a−2b)(x−a)(x−b)
Multiply the terms
(2ax−2a2−2bx+2ba)(x−b)
Apply the distributive property
2ax×x−2axb−2a2x−(−2a2b)−2bx×x−(−2bxb)+2bax−2bab
Multiply the terms
2ax2−2axb−2a2x−(−2a2b)−2bx×x−(−2bxb)+2bax−2bab
Multiply the terms
2ax2−2axb−2a2x−(−2a2b)−2bx2−(−2bxb)+2bax−2bab
Multiply the terms
2ax2−2axb−2a2x−(−2a2b)−2bx2−(−2b2x)+2bax−2bab
Multiply the terms
2ax2−2axb−2a2x−(−2a2b)−2bx2−(−2b2x)+2bax−2b2a
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2ax2−2axb−2a2x+2a2b−2bx2+2b2x+2bax−2b2a
Add the terms
2ax2+0−2a2x+2a2b−2bx2+2b2x−2b2a
Removing 0 doesn't change the value,so remove it from the expression
2ax2−2a2x+2a2b−2bx2+2b2x−2b2a
−2x2b+2xb2a+b2x−b3a+2x2a−2xa2b−a2x+a3b=2ax2−2a2x+2a2b−2bx2+2b2x−2b2a
Cancel equal terms on both sides of the expression
2xb2a+b2x−b3a−2xa2b−a2x+a3b=−2a2x+2a2b+2b2x−2b2a
Move the expression to the left side
2xb2a+b2x−b3a−2xa2b−a2x+a3b−(−2a2x+2a2b+2b2x−2b2a)=0
Calculate the sum or difference
More Steps

Evaluate
2xb2a+b2x−b3a−2xa2b−a2x+a3b−(−2a2x+2a2b+2b2x−2b2a)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2xb2a+b2x−b3a−2xa2b−a2x+a3b+2a2x−2a2b−2b2x+2b2a
Subtract the terms
2xb2a−b2x−b3a−2xa2b−a2x+a3b+2a2x−2a2b+2b2a
Add the terms
2xb2a−b2x−b3a−2xa2b+a2x+a3b−2a2b+2b2a
2xb2a−b2x−b3a−2xa2b+a2x+a3b−2a2b+2b2a=0
Factor the expression
(−b2a−ba2+2xba+2ba−xb−xa)(b−a)=0
Separate the equation into 2 possible cases
−b2a−ba2+2xba+2ba−xb−xa=0b−a=0
−b2a−ba2+2xba+2ba−xb−xa=0b−a=0,x
Solution
≈−b2a−ba2+2xba+2ba−xb−xa=0,x≈b−a=0,x
Show Solution

Find the excluded values
a=x,a=bx,b=x
Evaluate
x−ax−b−x−bx−a=x−(ab)2(a−b),x
To find the excluded values,set the denominators equal to 0
x−a=0x−b=0x−(ab)=0
Solve the equations
More Steps

Evaluate
x−a=0
Move the expression to the right side
−a=0−x
Simplify
−a=−x
Divide both sides
a=x
a=xx−b=0x−(ab)=0
Solve the equations
More Steps

Evaluate
x−b=0
Move the expression to the right side
−b=0−x
Simplify
−b=−x
Divide both sides
b=x
a=xb=xx−(ab)=0
Solve the equations
More Steps

Evaluate
x−ab=0
Move the expression to the right side
−ab=0−x
Simplify
−ab=−x
Divide both sides
a=bx
a=xb=xa=bx
Solution
a=x,a=bx,b=x
Show Solution
